Skip to main content
Log in

Crosswise Radiative Convective Transport of Viscoplastic Type Nanofluid with Influence of Lorentz Force and Viscosity Variation

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Flow of rheological fluids often obeys stagnation flow dynamics in a number of modern-day manufacturing processes. Such flows not only invoke radiative heat transfer under high temperature but also exhibit considerable viscosity variation with temperature. Motivated by such fascinating facts, the present study is an effort to explore steady, two-dimensional crosswise transport of Casson fluid past a surface. A temperature-dependent viscosity model is incorporated along with magnetohydrodynamic effects. The conservation equations for mass, normal and tangential momentum and energy are normalized with the help of similarity transformations that are solved afterwards numerically using efficient Runge–Kutta–Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Comparison with the existing published literature is also presented to validate the solutions. Results of velocity, temperature, skin friction and heat flux are presented graphically and discussed in a physical manner. Graphical outcomes indicated that normal velocity profile declined rapidly with magnetic field strength, whereas thermal radiation enhanced the temperature distribution in the fluid flow. This trend revealed that thermal performance of viscoplastic fluid flow improved when radiation effects are incorporated. It is also noted that heat transfer rate at the stretching surface dropped with radiation parameter. Normal skin friction is observed to be significantly reduced, while tangential skin friction enhances with stronger magnetic field effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\({\mu }_{0}\) :

Reference viscosity \(\left( {{\text{kg}}.{\text{m}}^{{ - 1}} .{\text{s}}^{{ - 1}} } \right)\)

\({\overline{x} }^{*}\) :

Coordinate along the stretching surface \(\left(\text{m}\right)\)

\(\nu\) :

Kinematics viscosity \(\left({\text{m}}^{2}{.}^{-1}\right)\)

\({\overline{y} }^{*}\) :

Coordinate normal to the stretching surface \(\left(\text{m}\right)\)

\(M\) :

Magnetic parameter

\({\overline{u} }^{*}\) :

Velocity component in the \({x}^{*}\) direction \(\left(\text{m}.{s}^{-1}\right)\)

\(\beta\) :

Casson fluid parameter

\({\overline{v} }^{*}\) :

Velocity component in the \({y}^{*}\) direction \(\left(\text{m}.\text{s}^{-1}\right)\)

\(Bi\) :

Biot number

\({\overline{\text{p}} }^{*}\) :

Pressure \(\left(\text{N}.\text{m}^{-2}\right)\)

\(m\) :

Variable viscosity parameter

\({\overline{T} }^{*}\) :

Temperature of the fluid \(\left(\text{K}\right)\)

\(\gamma =\frac{b}{c}\) :

Flow obliqueness parameter

\(\bar{\kappa }^{*}\) :

Thermal conductivity (W.m−1 K−1)

\(\lambda\) :

Mixed convection parameter

\(\overline{\rho }\) :

Density of the fluid \(\left(\text{kg}. \text{m}^{-3}\right)\)

\(Rd\) :

Radiation parameter

\(Pr\) :

Prandtl number

\(B=\frac{a}{c}\) :

Stretching ratio parameter

\(Sc\) :

Schmidt number

\(Nt, Nb\) :

Thermophoresis brownian motion parameter

References

  1. Hiemenz, K.: The boundary layer on a straight circular cylinder immersed in the uniform flow of liquid. Dinglers Polytech. J. 326, 321–410 (1911)

    Google Scholar 

  2. Dorrepaal, J.: An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions. J. Fluid Mech. 163, 141–147 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Labropulu, F.; Dorrepaal, J.; Chandna, O.: Oblique flow impinging on a wall with suction or blowing. Acta Mech. 115(1), 15–25 (1996)

    Article  MATH  Google Scholar 

  4. Tilley, B.; Weidman, P.: Oblique two-fluid stagnation-point flow. Eur J Mech-B/Fluid 17(2), 205–217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blyth, M.; Pozrikidis, C.: Stagnation-point flow against a liquid film on a plane wall. Acta Mech. 180(1), 203–219 (2005)

    Article  MATH  Google Scholar 

  6. Pal, D.; Mandal, G.; Vajravelu, K.: Stagnation-point flow and heat transfer of radiative nanofluids over a stretching/shrinking sheet in a porous medium with a non-uniform heat source/sink. J Nanoflu 5(3), 375–383 (2016)

    Article  Google Scholar 

  7. Eldabe, N.; Saddeck, G.; El-Sayed, A.: Heat transfer of MHD non-newtonian casson fluid flow between two rotating cylinders. Mech Mech Eng 5(2), 237–251 (2001)

    Google Scholar 

  8. Shahmohamadi, H.: Analytic study on non-newtonian natural convection boundary layer flow with variable wall temperature on a horizontal plate. Meccanica 47(6), 1313–1323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nadeem, S.; Haq, R.U.; Lee, C.: MHD flow of a casson fluid over an exponentially shrinking sheet. Scientia Iranica 19(6), 1550–1553 (2012)

    Article  Google Scholar 

  10. Nadeem, S.; Mehmood, R.; Akbar, N.S.: Oblique stagnation point flow of a Casson-nano fluid towards a stretching surface with heat transfer. J. Comput. Theor. Nanosci. 11(6), 1422–1432 (2014)

    Article  Google Scholar 

  11. Alwawi, F.A., et al.: MHD natural convection of sodium alginate casson nanofluid over a solid sphere. Results in physics 16, 102818 (2020)

    Article  Google Scholar 

  12. Alwawi, F.A., et al.: Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 234(13), 2569–2580 (2020)

    Article  Google Scholar 

  13. Alwawi, F.A., et al.: A numerical approach for the heat transfer flow of carboxymethyl cellulose-water based Casson nanofluid from a solid sphere generated by mixed convection under the influence of Lorentz force. Mathematics 8(7), 1094 (2020)

    Article  Google Scholar 

  14. Hamarsheh, A.S., et al.: Heat transfer improvement in MHD natural convection flow of graphite oxide/carbon nanotubes-methanol based casson nanofluids past a horizontal circular cylinder. Processes 8(11), 1444 (2020)

    Article  Google Scholar 

  15. El-Zahar, E.R.; Rashad, A.M.; Seddek, L.F.: Impacts of viscous dissipation and brownian motion on Jeffrey nanofluid flow over an unsteady stretching surface with thermophoresis. Symmetry 12(9), 1450 (2020)

    Article  Google Scholar 

  16. El-Zahar, E.R., et al.: Unsteady MHD mixed convection flow of non-newtonian casson hybrid nanofluid in the stagnation zone of sphere spinning impulsively. Fluids 6(6), 197 (2021)

    Article  Google Scholar 

  17. Myers, T.; Charpin, J.; Tshehla, M.: The flow of a variable viscosity fluid between parallel plates with shear heating. Appl. Math. Model. 30(9), 799–815 (2006)

    Article  MATH  Google Scholar 

  18. Wylie, J.J.; Huang, H.: Extensional flows with viscous heating. J Fluid Mech 571, 359–370 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Costa, A.; Macedonio, G.: Viscous heating in fluids with temperature-dependent viscosity: implications for magma flows. Nonlin Process Geophys 10(6), 545–555 (2003)

    Article  Google Scholar 

  20. Elbashbeshy, E.; Bazid, M.: The effect of temperature-dependent viscosity on heat transfer over a continuous moving surface. J. Phys. D Appl. Phys. 33(21), 2716 (2000)

    Article  Google Scholar 

  21. Elbashbeshy, E.; Bazid, M.: The effect of temperature-dependent viscosity on heat transfer over a continuous moving surface with variable internal heat generation. Appl. Math. Comput. 153(3), 721–731 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Elbarbary, E.M.; Elgazery, N.S.: Chebyshev finite difference method for the effects of variable viscosity and variable thermal conductivity on heat transfer from moving surfaces with radiation. Int. J. Therm. Sci. 43(9), 889–899 (2004)

    Article  Google Scholar 

  23. Makinde, O.D.; Ogulu, A.: The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Chem. Eng. Commun. 195(12), 1575–1584 (2008)

    Article  Google Scholar 

  24. Ellahi, R.; Riaz, A.: Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math. Comput. Model. 52(9–10), 1783–1793 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Alam, M., et al.: Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers. Int. J. Mech. Sci. 105, 191–205 (2016)

    Article  Google Scholar 

  26. Rashidi, M., et al.: Magnetohydrodynamic biorheological transport phenomena in a porous medium: a simulation of magnetic blood flow control and filtration. Int J Numer Meth Biomed Eng 27(6), 805–821 (2011)

    Article  MATH  Google Scholar 

  27. Turkyilmazoglu, M.: Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet. Int. J. Therm. Sci. 50(11), 2264–2276 (2011)

    Article  Google Scholar 

  28. Turkyilmazoglu, M.: Multiple solutions of hydromagnetic permeable flow and heat for viscoelastic fluid. J. Thermophys. Heat Transfer 25(4), 595–605 (2011)

    Article  Google Scholar 

  29. Hamad, M.; Uddin, M.J.; Ismail, A.M.: Investigation of combined heat and mass transfer by Lie group analysis with variable diffusivity taking into account hydrodynamic slip and thermal convective boundary conditions. Int. J. Heat Mass Transf. 55(4), 1355–1362 (2012)

    Article  MATH  Google Scholar 

  30. Noor, N.; Abbasbandy, S.; Hashim, I.: Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink. Int. J. Heat Mass Transf. 55(7–8), 2122–2128 (2012)

    Article  Google Scholar 

  31. Rashidi, M.M., et al.: Mixed convection boundary-layer flow of a micro polar fluid towards a heated shrinking sheet by homotopy analysis method. Therm. Sci. 20(1), 21–34 (2016)

    Article  Google Scholar 

  32. Rashidi, M., et al.: Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica 49(2), 469–482 (2014)

    Article  MATH  Google Scholar 

  33. Khan, A.A., et al.: Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field. J. Magn. Magn. Mater. 372, 97–106 (2014)

    Article  Google Scholar 

  34. Nadeem, S.; Mehmood, R.; Akbar, N.S.: Thermo-diffusion effects on MHD oblique stagnation-point flow of a viscoelastic fluid over a convective surface. The Eur Phys J Plus 129(8), 1–17 (2014)

    Article  Google Scholar 

  35. Nadeem, S.; Mehmood, R.; Akbar, N.S.: Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions. Int. J. Therm. Sci. 78, 90–100 (2014)

    Article  Google Scholar 

  36. Sheikholeslami, M., et al.: Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magn. Magn. Mater. 374, 36–43 (2015)

    Article  Google Scholar 

  37. Hossain, M.; Takhar, H.: Radiation effect on mixed convection along a vertical plate with uniform surface temperature. Heat Mass Transf. 31(4), 243–248 (1996)

    Article  Google Scholar 

  38. Zahmatkesh, I.: Influence of thermal radiation on free convection inside a porous enclosure. Momentum 10, 1 (2007)

    Google Scholar 

  39. Moradi, A., et al.: On mixed convection–radiation interaction about an inclined plate through a porous medium. Int. J. Therm. Sci. 64, 129–136 (2013)

    Article  Google Scholar 

  40. Pal, D.; Mondal, H.: Radiation effects on combined convection over a vertical flat plate embedded in a porous medium of variable porosity. Meccanica 44(2), 133–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Singh, N., et al.: Effects of thermophoresis on hydromagnetic mixed convection and mass transfer flow past a vertical permeable plate with variable suction and thermal radiation. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2519–2534 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ali, F.M., et al.: Mixed convection stagnation-point flow on vertical stretching sheet with external magnetic field. Appl. Math. Mech. 35(2), 155–166 (2014)

    Article  MathSciNet  Google Scholar 

  43. Patil, P.; Anilkumar, D.; Roy, S.: Unsteady thermal radiation mixed convection flow from a moving vertical plate in a parallel free stream: effect of Newtonian heating. Int. J. Heat Mass Transf. 62, 534–540 (2013)

    Article  Google Scholar 

  44. Ellahi, R., et al.: A study on the mixed convection boundary layer flow and heat transfer over a vertical slender cylinder. Therm. Sci. 18(4), 1247–1258 (2014)

    Article  Google Scholar 

  45. Mehmood, R.; Tabassum, R.; Akbar, N.S.: Oblique stagnation poiny flow of non newtonian fluid with variable viscosity. Heat Trans Res (2018). https://doi.org/10.1615/HeatTransRes.2018018569

    Article  Google Scholar 

  46. Tabassum, R.; Mehmood, R.; Maraj, E.: Impact of internal heat source on mixed convective transverse transport of viscoplastic material under viscosity variation. Commun. Theor. Phys. 70(4), 423 (2018)

    Article  MathSciNet  Google Scholar 

  47. Mehmood, R., et al.: Crosswise stream of hydrogen-oxide (H2O) through a porous media containing copper nanoparticles. Int J Hydrogen Energy 43(15), 7562–7569 (2018)

    Article  Google Scholar 

  48. Mahapatra, T.R.; Gupta, A.: Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf. 38(6), 517–521 (2002)

    Article  Google Scholar 

  49. Labropulu, F.; Li, D.; Pop, I.: Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer. Int. J. Therm. Sci. 49(6), 1042–1050 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

 The authors have not received any financial support in publishing this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabil Tabassum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabassum, R., Mehmood, R. & Malik, M.Y. Crosswise Radiative Convective Transport of Viscoplastic Type Nanofluid with Influence of Lorentz Force and Viscosity Variation. Arab J Sci Eng 47, 16319–16330 (2022). https://doi.org/10.1007/s13369-022-06893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06893-4

Keywords

Navigation