Skip to main content
Log in

Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this article we derive semi-analytical/numerical solutions for transport phenomena (momentum, heat and mass transfer) in a nanofluid regime adjacent to a nonlinearly porous stretching sheet by means of the Homotopy analysis method (HAM). The governing equations are reduced to a nonlinear, coupled, non-similar, ordinary differential equation system via appropriate similarity transformations. This system is solved under physically realistic boundary conditions to compute stream function, velocity, temperature and concentration function distributions. The results of the present study are compared with numerical quadrature solutions employing a shooting technique with excellent correlation. Furthermore the current HAM solutions demonstrate very good correlation with the non-transpiring finite element solutions of Rana and Bhargava (Commun. Nonlinear Sci. Numer. Simul. 17:212–226, 2012). The influence of stretching parameter, transpiration (wall suction/injection) Prandtl number, Brownian motion parameter, thermophoresis parameter and Lewis number on velocity, temperature and concentration functions is illustrated graphically. Transpiration is shown to exert a substantial influence on flow characteristics. Applications of the study include industrial nanotechnological fabrication processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME FED, New York

    Google Scholar 

  2. Eastman JA, Choi US, Li S, Soyez G, Thompson LJ, DiMelfi RJ (1999) Novel thermal properties of nanostructured materials. Mater Sci Forum 312–314:629–634

    Article  Google Scholar 

  3. Xuana Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    Article  Google Scholar 

  4. Masuda H, Ebata A, Teramae K, Hishinuma H (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of 7-Al203, SiO2 and TiO2 ultra-fine particles). Netsu Bussei 4:227–233

    Article  Google Scholar 

  5. Pak B, Cho Y (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Article  ADS  Google Scholar 

  6. Maïga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N (2005) Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow 26:530–546

    Article  Google Scholar 

  7. Roy G, Nguyen CT, Lajoie P-R (2004) Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlattices Microstruct 35:497–511

    Article  ADS  Google Scholar 

  8. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    Article  MATH  Google Scholar 

  9. Abu-Nada E, Masoud Z, Oztop HF, Campo A (2010) Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci 49:479–491

    Article  Google Scholar 

  10. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Article  Google Scholar 

  11. Akbari M, Behzadmehr A, Shahraki F (2008) Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid. Int J Heat Fluid Flow 29:545–556

    Article  Google Scholar 

  12. Akbari M, Behzadmehr A (2007) Developing mixed convection of a nanofluid in a horizontal tube with uniform heat flux. Int J Numer Methods Heat Fluid Flow 17:566–586

    Article  Google Scholar 

  13. Chang H, Chang Y-C (2008) Fabrication of Al2O3 nanofluid by a plasma arc nanoparticles synthesis system. J Mater Process Technol 207:193–199

    Article  Google Scholar 

  14. Krajnik P, Pusavec F, Rashid A (2011) Nanofluids: Properties, applications and sustainability aspects in materials processing technologies. In: Seliger G, Khraisheh MMK, Jawahir IS (eds) Advances in sustainable manufacturing. Springer, Berlin, pp 107–113

    Chapter  Google Scholar 

  15. Rana P, Bhargava R, Bég OA (2012) Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium. Comput Math Appl 64:2816–2832

    Article  MATH  MathSciNet  Google Scholar 

  16. Rashidi MM, Abelman S, Freidoonimehr N (2013) Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf 62:515–525

    Article  Google Scholar 

  17. Mohammadein AA, Gorla RSR (2001) Heat transfer in a micropolar fluid over a stretching sheet with viscous dissipation and internal heat generation. Int J Numer Methods Heat Fluid Flow 11:50–58

    Article  MATH  Google Scholar 

  18. Bhargava R, Kumar L, Takhar HS (2003) Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet. Int J Eng Sci 41:2161–2178

    Article  MATH  Google Scholar 

  19. Rana P, Bhargava R (2012) Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study. Commun Nonlinear Sci Numer Simul 17:212–226

    Article  ADS  MathSciNet  Google Scholar 

  20. Abel MS, Kumar KA, Ravikumara R (2011) MHD flow, and heat transfer with effects of buoyancy, viscous and joule dissipation over a nonlinear vertical stretching porous sheet with partial slip. Engineering 3:285–291

    Article  Google Scholar 

  21. Nield DA, Kuznetsov AV (2009) The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf 52:5792–5795

    Article  MATH  Google Scholar 

  22. Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483

    Article  MATH  Google Scholar 

  23. Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Therm Sci 49:1663–1668

    Article  Google Scholar 

  24. Liao SJ (2004) Beyond perturbation: introduction to the homotopy analysis method. Chapman & Hall/CRC Press, London/Boca Raton

    Google Scholar 

  25. Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    Article  MATH  MathSciNet  Google Scholar 

  26. Liao SJ (2005) Comparison between the homotopy analysis method and homotopy perturbation method. Appl Math Comput 169:1186–1194

    Article  MATH  MathSciNet  Google Scholar 

  27. Turkyilmazoglu M (2010) A note on the homotopy analysis method. Appl Math Lett 23:1226–1230

    Article  MATH  MathSciNet  Google Scholar 

  28. Turkyilmazoglu M (2011) Numerical and analytical solutions for the flow and heat transfer near the equator of an MHD boundary layer over a porous rotating sphere. Int J Therm Sci 50:831–842

    Article  Google Scholar 

  29. Turkyilmazoglu M (2012) Solution of the Thomas–Fermi equation with a convergent approach. Commun Nonlinear Sci Numer Simul 17:4097–4103

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Turkyilmazoglu M (2012) The Airy equation and its alternative analytic solution. Phys Scr 86:055004

    Article  Google Scholar 

  31. Turkyilmazoglu M (2011) Some issues on HPM and HAM methods: a convergence scheme. Math Comput Model 53:1929–1936

    Article  MATH  MathSciNet  Google Scholar 

  32. Turkyilmazoglu M (2011) Convergence of the homotopy perturbation method. Int J Nonlinear Sci Numer Simul 12:9–14

    Article  MathSciNet  Google Scholar 

  33. Hayat T, Nawaz M, Asghar S, Mesloub S (2011) Thermal-diffusion and diffusion-thermo effects on axisymmetric flow of a second grade fluid. Int J Heat Mass Transf 54:3031–3041

    Article  MATH  Google Scholar 

  34. Rashidi MM, Hayat T, Erfani E, Mohimanian Pour SA, Hendi AA (2011) Simultaneous effects of partial slip and thermal-diffusion and diffusion-thermo on steady MHD convective flow due to a rotating disk. Commun Nonlinear Sci Numer Simul 16:4303–4317

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Rashidi MM, Mohimanian Pour SA, Hayat T, Obaidat S (2012) Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Comput Fluids 54:1–9

    Article  MathSciNet  Google Scholar 

  36. Rashidi MM, Ali M, Freidoonimehr N, Nazari F (2013) Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm. Energy 55:497–510

    Article  Google Scholar 

  37. Tripathi D, Bég OA, Curiel-Sosa JL (2012) Homotopy semi-numerical simulation of peristaltic flow of generalised Oldroyd-B fluids with slip effects. Comput Methods Biomech Biomed Eng, 1–10

  38. Liao SJ (2010) An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 15:2003–2016

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Rashidi MM, Mohimanian Pour SA, Abbasbandy S (2011) Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Commun Nonlinear Sci Numer Simul 16:1874–1889

    Article  ADS  Google Scholar 

  40. Turkyilmazoglu M (2010) Purely analytic solutions of magnetohydrodynamic swirling boundary layer flow over a porous rotating disk. Comput Fluids 39:793–799

    Article  MATH  Google Scholar 

  41. Cortell R (2007) Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl Math Comput 184:864–873

    Article  MATH  MathSciNet  Google Scholar 

  42. Chen Co-K, Char M-I (1988) Heat transfer of a continuous, stretching surface with suction or blowing. J Math Anal Appl 135:568–580

    Article  MATH  MathSciNet  Google Scholar 

  43. Husnain S, Mehmood A, Bég OA, Ali A (2012) Suction and blowing effects on unsteady flow and heat transfer through porous media with variable viscosity. J Porous Media 15:293–302

    Article  Google Scholar 

  44. Bég OA, Bég TA, Rashidi MM, Asadi M (2012) Homotopy semi-numerical modelling of nanofluid convection boundary layers from an isothermal spherical body in a permeable regime. Int J Microscale Nanoscale Therm Fluid Transp Phenom 3:237–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Anwar Bég.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashidi, M.M., Freidoonimehr, N., Hosseini, A. et al. Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica 49, 469–482 (2014). https://doi.org/10.1007/s11012-013-9805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9805-9

Keywords

Navigation