Skip to main content
Log in

Radiation effect on mixed convection along a vertical plate with uniform surface temperature

Strahlungseinflüsse auf die Mischkonvektion entlang einer senkrechten Platte mit gleichförmiger Oberflächentemperatur

  • Originals
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper investigates the effect of radiation on the forced and free convection flow of an optically dense viscous incompressible fluid along a heated vertical flat plate with uniform free stream and uniform surface temperature with Rosseland diffusion approximation. With appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity equations valid in the forced convection regime as well as in the free convection regime. A group of transformation is, also, introduced to reduce the boundary layer equations to a set of local nonsimilarity equations valid in both the forced and free convection regimes. Solutions of the governing equations are obtained by employing the implicit finite difference methods together with Keller box scheme and are expressed in terms of local shear stress and local rate of heat transfer for a range of values of the pertinent parameters.

Zusammenfassung

In der Arbeit wird der Einfluß der Wärmestrahlung auf die erzwungene und freie Konvektionsströmung eines optisch dichten, zähen, inkompressiblen Fluids entlang einer beheizten, senkrechten Platte mit gleichförmiger Oberflächentemperatur mit Hilfe der Rosseland-Diffusionsnäherung untersucht. Durch geeignete Transformationen lassen sich die den Strömungsvorgang beschreibenden Grenzschichtgleichungen in lokale, Nichtähnlichkeits-Gleichungen überführen, die sowohl im Bereich der Zwangs- wie der Freikonvektion Gültigkeit haben. Durch Anwendung impliziter Finitdifferenzen-Methoden in Verbindung mit dem “Keller-Box” Schema wurden Lösungen der Grundgleichungen gewonnen und in Form lokaler Schubspannungen und Wärmeübergangsintensitäten in einem weiten Bereich der Haupteinflußparameter dokumentiert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Rosseland mean absorption coefficient

f :

dimensionless stream function

u :

velocity component in thex-direction

v :

velocity component in they-direction

g :

acceleration of gravity

R d :

conduction-radiation parameter

T :

temperature of fluid

T 0 :

temperature of ambient fluid

T w :

plate temperature

C p :

specific heat at constant pressure

κ :

the coefficient of thermal diffusivity

Pr :

Prandtl number

Q :

nondimensional heat transfer

x :

coordinate measuring distance along plate

y :

coordinate measuring distance normal to plate

α :

effective thermal diffusivity (k/ρC p )

ψ :

stream function

θ :

dimensionless temperature function

θ w :

dimensionless surface temperature

β :

the coefficient of volume expansion

ν :

the kinematic coefficient of viscosity

ϱ :

fluid density

σ :

Stephen-Boltzman constant

σ s :

scattering coefficient

τ w :

nondimensional shear stress

η :

similarity variable

ξ :

scaled streamwise coordinate

References

  1. Pohlausen, H.: Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. ZAMM 1 (1921) 115–121

    Google Scholar 

  2. Ostrach, S.: An analysis of laminar free convection flow and heat transfer along a flat plate parallel to the direction of the generating body force. NACA Report 1111 (1953)

  3. Sparrow, E.M.;Eichorn, R.;Gregg, J.L.: Combined forced and free convection in a boundary layer flow. Physics Fluids 2 (1959) 319–328

    Article  Google Scholar 

  4. Merkin, J.H.: The effect of buoyancy forces on the boundary layer flow over a semi-infinite vertical flat plate in a uniform stream. J. Fluid Mech. 35 (1969) 439–450

    MATH  Google Scholar 

  5. Lloyd, J.R.;Sparrow, E.M.: Combined forced and free convection flow on vertical surface. Int. J. Heat Mass Transfer 13 (1970) 434–438

    Article  Google Scholar 

  6. Wilks, G.: Combined forced and free convection flow on vertical surfaces. Int. J. Heat Mass Transfer 16 (1973) 1958–1964

    Article  MATH  Google Scholar 

  7. Rajn, M.R.;Liu, X.R.;Law, C.K.: A formulation of combined forced and free convection past horizontal and vertical surface. Int. J. Heat Mass Transfer 27 (1984) 2215–2224

    Google Scholar 

  8. Tingwei, G.;Bachrun, R.;Daguent, M.: Influence de la convection naturel le sur la convection force andessus d'une surface plane vertical voumise a un flux de rayonement. Int. J. Heat Mass Transfer 25 (1982) 1061–1065

    Google Scholar 

  9. Soundalgekar, V.M.;Takhar, H.S.: Radiative free convection flow of a gas past a semi-infinite vertical plate. Mod. Meas. Contr. B51 (1993) 31–40

    Google Scholar 

  10. Cogley, A.C.;Vincenti, W.G.;Giles, S.E.: Differential approximation for radiative transfer in a non-grey gas near equilibrium. AIAA J. 6 (1963) 551–553

    Google Scholar 

  11. Takhar, H.S.; Gorla, R.S.R.; Soundalgekar, V.M.: Radiation effects on MHD free convection flow of radiating gas past a vertical infinite plate. Num. Meth. Heat Fluid Flow (1995) (to appear)

  12. Keller, H.B.: Numerical methods in boundary layer theory. Ann. Rev. Fluid. Mech. 10 (1978) 417–433

    Article  MATH  Google Scholar 

  13. Hossain, M.A.;Banu, N.;Nakayama, A.: Non-Darcy forced convection boundary layer flow over a wedge embedded in a saturated porous medium. Num. Heat Transfer A26 (1994) 399–414

    Google Scholar 

  14. Hossain, M.A.; Choudhury, M.K.; Takhar, H.S.: Mixed convection flow of micropolar fluids with variable spin gradient viscosity along a vertical flat plate. Theor. Appl. Fluid Mech. (1995) (in press)

  15. Plumb, O.A.; Huenfeld, J.S.; Eschbach, E.J.: The effect of crossflow and radiation on natural convection from vertical heated surfaces in saturated porous media. AIAA 16th Thermophysics Conf., 23–25 June, Palo Alto, California (1981)

  16. Siegel, R.;Howell, J.R.: Thermal Radiation Heat Transfer. NY: McGraw-Hill (1972)

    Google Scholar 

  17. Hunt, R.;Wilks, G.: Continuous transformation computation of boundary layer equations between similarity regimes. J. Comp. Phys. 40 (1981) 474–490

    MathSciNet  Google Scholar 

  18. Sparrow, E.M.;Yu, H.S.: Local non-similarity thermal boundary layer solutions. ASME J. Heat Transfer 93 (1971) 328–334

    Google Scholar 

  19. Chen, T.S.: Parabolic systems: local non-similarity method. In: Handbook of Numerical Heat Transfer, Chap. 5. Minkowycz, W.J. et al. (Eds.). NY: Wiley 1988

    Google Scholar 

  20. Cebeci, T.;Bradshaw, P.: Physical and Computational Aspects of Convective Heat Transfer. NY: Springer 1984

    Google Scholar 

  21. Hossain, M.A.: Viscous and Joule heating effects on MHD-free convection flow with variable plate temperature. Heat Mass Transfer 35 (1992) 3485–3487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.A., Takhar, H.S. Radiation effect on mixed convection along a vertical plate with uniform surface temperature. Heat and Mass Transfer 31, 243–248 (1996). https://doi.org/10.1007/BF02328616

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02328616

Keywords

Navigation