Skip to main content
Log in

Finite Element Analysis of Viscoelastic Nanofluid Flow with Energy Dissipation and Internal Heat Source/Sink Effects

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A numerical study is conducted of laminar viscoelastic nanofluid polymeric boundary layer stretching sheet flow. Viscous dissipation, surface transpiration (suction/injection), internal heat generation/absorption and work done due to deformation are incorporated using a second grade viscoelastic non-Newtonian nanofluid with non-isothermal associated boundary conditions. The nonlinear boundary value problem is solved using a higher order finite element method. The influence of viscoelasticity parameter, Brownian motion parameter, thermophoresis parameter, Eckert number, Lewis number, Prandtl number, internal heat generation and also wall suction on thermofluid characteristics is evaluated in detail. Validation with earlier non-dissipative studies is also included. The hp-finite element method achieves the desired accuracy at \(p=8\) with comparatively less CPU cost per iteration (with less degrees of freedom, DOF) as compared to lower order finite element methods. The simulations have shown that greater polymer fluid viscoelasticity \(({k}_{1})\) accelerates the flow. A rise in Brownian motion parameter (Nb) and thermophoresis parameter (Nt) elevates temperatures and reduce the heat transfer rates (local Nusselt number function). Increasing Eckert number increases temperatures whereas increasing Prandtl number (Pr) strongly lowers temperatures. Increasing internal heat generation \(({Q} > 0)\) elevates temperatures and reduces the heat transfer rate (local Nusselt number function) whereas heat absorption \(({Q} < 0)\) generates the converse effect. Increasing suction \(({f}_{w}>0)\) reduces velocities and temperatures but elevates enhances mass transfer rates (local Sherwood number function), whereas increasing injection \(({f}_{w}<0)\) accelerate the flow, increases temperatures and depresses wall mass transfer rates. The study finds applications in rheological nano-bio-polymer manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(u_w\) :

Sheet velocity (m/s)

ABE :

Constants

Q :

Internal heat source/sink

C :

Nanoparticle volume fraction

\(C_w\) :

Nanoparticle volume fraction

\(C_\infty \) :

Ambient nanoparticle volume fraction

Nt :

Thermophoresis parameter

(xy):

Cartesian coordinates (m)

\(T_w\) :

Temperature at the sheet (K)

\(T_\infty \) :

Ambient temperature attained (K)

T :

Temperature on the sheet (K)

Pr :

Prandtl number

\(q_m\) :

Wall mass flux (kg/s)

\(q_w\) :

Wall heat flux \((\hbox {W}/\hbox {m}^{2})\)

\(D_B\) :

Brownian diffusion coefficient \((\hbox {m}^{2}/\hbox {s})\)

\(D_T\) :

Thermophoretic diffusion coefficient \((\hbox {m}^{2}/\hbox {s})\)

\(u_{w}\) :

Velocity of stretching sheet (m/s)

\(f(\eta )\) :

Dimensionless stream function

\(g(\eta )\) :

Gravitational acceleration \((\hbox {m}/\hbox {s}^2)\)

Nb :

Brownian motion parameter

Le :

Lewis number

\(k_{1}\) :

Viscoelastic parameter

\(Nu_{x}\) :

Nusselt number

\(A_{1}, A_{2}\) :

Rivlin–Ericksen tensors in the constitutive relation \((\hbox {N}/\hbox {m}^2)\)

Ec :

Eckert number

\(Sh_{x}\) :

Sherwood number

\(C_{f}\) :

Skin friction

\(u,\upsilon \) :

Velocity components along xy axes (m/s)

\(f_w\) :

Suction/injection parameter

m :

Power-law parameter

\(\Gamma \) :

Stress tensor \((\hbox {N}/\hbox {m}^{2})\)

\(\tau \) :

Parameter defined by \(\varepsilon \left( {\rho c} \right) _p /\left( {\rho c} \right) _f\)

\(\left( {\rho c} \right) _f\) :

Heat capacity of the fluid \((\hbox {J}/\hbox {kg}^{3}\,\hbox {K})\)

\(\phi \left( \eta \right) \) :

Rescaled nanoparticle volume fraction

\(\eta \) :

Similarity variable

\(\theta \left( \eta \right) \) :

Dimensionless temperature

\(\left( {\rho c} \right) _p\) :

Effective heat capacity of the nanoparticle material \((\hbox {J}/\hbox {kg}^{3}\,\hbox {K})\)

\(\rho _{f}\) :

Fluid density \((\hbox {kg}/\hbox {m}^{3})\)

\(\beta \) :

Volumetric expansion coefficient of the fluid (l/K)

\(\rho _{p}\) :

Nanoparticle mass density \((\hbox {kg}/\hbox {m}^3)\)

\(\psi \) :

Stream function

\(\nu \) :

Fluid kinematic viscosity \((\hbox {m}^2/\hbox {s})\)

\(\alpha _m\) :

Thermal diffusivity \((\hbox {m}^2/\hbox {s})\)

\(\alpha _1 , \alpha _2\) :

Material moduli \((\hbox {N}/\hbox {m}^2)\)

\(\beta _1 , \beta _2 , \beta _3\) :

Higher order viscosities \((\hbox {m}^2/\hbox {s})\)

w :

Condition on the sheet (wall)

\(\infty \) :

Condition far away from the sheet (free stream)

References

  1. Nie, Z., Kumacheva, E.: Patterning surfaces with functional polymers. Nat. Mater. 7, 277–290 (2008)

    Article  Google Scholar 

  2. Pal, K., Banthia, A.K., Majumdar, D.K.: Polymeric hydrogels: characterization and biomedical applications. Des. Monomers Polym. 12, 197–220 (2009)

    Article  Google Scholar 

  3. Becker, T.A., Kipke, D.R.: Flow properties of liquid calcium alginate polymer injected through medical microcatheters for endovascular embolization. J. Biomed. Mater. Res. 61, 533–540 (2002)

    Article  Google Scholar 

  4. Richard, A., Margantis, A.: Production and mass transfer characteristics of non-Newtonian biopolymers for biomedical applications. Crit. Rev. Biotechnol. 22, 355–374 (2002)

    Article  Google Scholar 

  5. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds.) Developments and applications of non-Newtonian flows, vol. 66, pp. 99–105. ASME Fluids Engineering Division, Boston (1995)

    Google Scholar 

  6. Anwar Bég, O., Tripathi, D.: Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: a bio–nano-engineering model. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 225, 99–114 (2012)

    Google Scholar 

  7. Anwar Bég, O., Rashidi, M.M., Akbari, M., Hosseini, A.: Comparative numerical study of single-phase and two-phase models for bio-nanofluid transport phenomena. J. Mech. Med. Biol. 14, 1450011.1–1450011.31 (2014)

    Google Scholar 

  8. Pak, B.C., Cho, Y.: Hydrodynamics and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998)

    Article  Google Scholar 

  9. Karthikeyan, N.R., Philip, J., Raj, B.: Effect of clustering on the thermal conductivity of nanofluids. Mater. Chem. Phys. 109, 50–55 (2008)

    Article  Google Scholar 

  10. Prakash, M., Giannelis, E.P.: Mechanism of heat transport in nanofluids. J. Comput. Aided Mater. Des. 14, 109–117 (2007)

    Article  Google Scholar 

  11. Wang, X., Xu, X., Choi, S.U.S.: Thermal conductivity of nanoparticle fluid mixture. AIAA J. Thermophys. Heat Trans. 13(4), 474–480 (1999)

    Article  Google Scholar 

  12. Jang, S.P., Choi, S.U.S.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. App. Phys. Lett. 84, 4316–4318 (2004)

    Article  Google Scholar 

  13. Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.S.: Empirical correlation finding the role of temperature and particle size for nanofluid \((\text{ Al }_{2}\text{ O }_{3})\) thermal conductivity enhancement. App. Phys. Lett. 87, 153107 (2005)

    Article  Google Scholar 

  14. Keblinski, P., Eastman, J.A., Cahill, D.G.: Nanofluids for thermal transport. Mat. Today 8, 36–44 (2005)

  15. Leong, K.C., Yang, C., Murshed, S.M.S.: A model for the thermal conductivity of nanofluids: the effect of interfacial layer. J. Nanoparticle Res. 8, 245–254 (2006)

    Article  Google Scholar 

  16. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  17. Eastman, J.A., Phillpot, S.R., Choi, S.U.S., Keblinski, P.: Thermal transport in nanofluids. Ann. Rev. Mater. Res. 34, 219–146 (2004)

    Article  MATH  Google Scholar 

  18. Wang, X.-Q., Majumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Thermal Sci. 46, 1–19 (2007)

    Article  Google Scholar 

  19. Trisaksri, V., Wongwises, S.: Critical review of heat transfer characteristics of nanofluids. Renew. Sustain. Energy Rev. 11, 512–523 (2007)

    Article  Google Scholar 

  20. Wen, D., Lin, G., Vafaei, S., Zhang, K.: Review of nanofluids for heat transfer applications. Particuology 7, 141–150 (2009)

    Article  Google Scholar 

  21. Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)

    Article  Google Scholar 

  22. Kuznetsov, A.V., Nield, D.A.: Natural convection boundary layer flow of a nanofluids past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  23. Rana, P., Bhargava, R., Anwar Bég, O.: Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium. Comput. Math. Appl. 64, 2816–2832 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rana, P., Bhargava, R.: Flow and heat transfer analysis of a nanofluid along a vertical flat plate with non-uniform heating using FEM: effect of nanoparticle diameter. Int. J. Appl. Phys. Math. 1, 171–176 (2011)

    Article  Google Scholar 

  25. Prasad, V.R., Gaffar, S.A., Anwar Bég, O.: Heat and mass transfer of a nanofluid from a horizontal cylinder to a micropolar fluid. AIAA J. Thermophys. Heat Transf. 29, 127–139 (2015)

    Article  Google Scholar 

  26. Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  27. Rana, P., Bhargava, R.: Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study. Commun. Nonlinear Sci. Num. Simul. 17(1), 212–226 (2012)

    Article  MathSciNet  Google Scholar 

  28. Uddin, M.J., Anwar Bég, O., Amin, N.S.: Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: a model for bio-nano-materials processing. J. Magnetism Magn. Mater. 368, 252–261 (2014)

    Article  Google Scholar 

  29. Uddin, M.J., Bég, O.A., Ismail, A.I.M: Mathematical modelling of radiative hydromagnetic thermo-solutal nanofluid convection slip flow in saturated porous media. Math. Prob. Eng. Article ID 179172, 11 pages. doi:10.1155/2014/179172 (2014)

  30. Nadeem, S., Lee, C.: Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res. Lett. 7, 94 (2012)

    Article  Google Scholar 

  31. Kandasamy, R., Loganathan, P., PuviArasu, P.: Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection. Nuclear Eng. Des. 241(6), 2053–2059 (2011)

    Article  Google Scholar 

  32. Bachok, N., Ishak, A., Pop, I.: Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet. Int. J. Heat Mass Transf. 55(7–8), 2102–2109 (2012)

    Article  Google Scholar 

  33. Rana, P., Bhargava, R., Anwar Bég, O.: Unsteady MHD transport phenomena on a stretching sheet in a rotating nanofluid. Proc. Int. Mech. E Part N J. Nanoeng. Nanosyst. 227, 277–299 (2013)

    Google Scholar 

  34. Chen, H.S., Ding, T.L., He, Y.R., Tan, C.Q.: Rheological behaviour of ethylene glycol based titanium nanofluids. Chem. Phys. Lett. 444, 333–337 (2007)

    Article  Google Scholar 

  35. Chen, H.S., Ding, T.L., Lapkin, A.: Rheological behaviour of nanofluids containing tube/rod like nanoparticles. Power Technol. 194, 132–141 (2009)

    Article  Google Scholar 

  36. Gallego, M.J.P., Lugo, L., Legido, J.L., Piñeiro, M.M.: Rheological non-Newtonian behaviour of ethylene glycol-based \(\text{ Fe }_{2}\text{ O }_{3}\)-nanofluids. Nanoscale Res. Lett. 6(1), 560 (2011)

    Article  Google Scholar 

  37. Khan, W.A., Gorla, R.S.R.: Heat and mass transfer in non-Newtonian nanofluids over a non-isothermal stretching wall. Proc. Inst. Mech. E Part N J. Nanoeng. Nanosyst. 225, 155–163 (2011)

    Google Scholar 

  38. Rajagopal, K.R., Na, T.Y., Gupta, A.S.: Flow of a viscoelastic fluid over a stretching sheet. Rheol. Acta 23, 213–215 (1984)

    Article  Google Scholar 

  39. Rajagopal, K.R., Na, T.Y., Gupta, A.S.: A non-similar boundary layer on a stretching sheet in a non-Newtonian fluid with uniform free stream. J. Math. Phys. Sci. 21(2), 189–200 (1987)

    MATH  Google Scholar 

  40. Dandapat, B.S., Gupta, A.S.: Flow and heat transfer in a viscoelastic fluid over a stretching sheet. Int. J. Nonlinear Mech. 24(3), 215–219 (1989)

    Article  MATH  Google Scholar 

  41. Rao, B.N.: Technical note: flow of a fluid of second grade over a stretching sheet. Int. J. Nonlinear Mech. 31(4), 547–550 (1996)

    Article  MATH  Google Scholar 

  42. Khan, S.K.: Heat transfer in a viscoelastic fluid flow over a stretching surface with heat source/sink, suction/blowing and radiation. Int. J. Heat Mass Transf. 49(3–4), 628–639 (2006)

    Article  MATH  Google Scholar 

  43. Anwar Bég, O., Bég, T.A., Takhar, H.S., Raptis, A.: Mathematical and numerical modeling of non-Newtonian thermo-hydrodynamic flow in non-Darcy porous media. Int. J Fluid Mech. Res. 31, 1–12 (2004)

    Article  MathSciNet  Google Scholar 

  44. Anwar Bég, O., Takhar, H.S., Bharagava, R., Rawat, S., Prasad, V.R.: Numerical study of heat transfer of a third grade viscoelastic fluid in non-Darcian porous media with thermophysical effects. Phys. Scr. 77, 1–11 (2008)

    Article  Google Scholar 

  45. Chen, C.-H.: On the analytic solution of MHD flow and heat transfer for two types of viscoelastic fluid over a stretching sheet with energy dissipation, internal heat source and thermal radiation. Int. J. Heat Mass Transf. 53, 4264–4273 (2010)

    Article  MATH  Google Scholar 

  46. Anwar Bég, O., Sharma, S., Bhargava, R., Bég, T.A.: Finite element modelling of transpiring third-grade viscoelastic biotechnological fluid flow in a Darcian permeable half-space. Int. J. Appl. Math. Mech. 7, 38–52 (2011)

    MATH  Google Scholar 

  47. Krishnamurthy, M.R., Prasannakumara, B.C., Gireesha, B.J., Gorla, R.S.R.: Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Eng. Sci. Technol. Int. J. 19, 53–61 (2016)

    Article  Google Scholar 

  48. Hussain, T., Shehzad, S.A., Hayat, T., Alsaedi, A., Al-Solamy, F.: Radiative hydromagnetic flow of Jeffrey nanofluid by an exponentially stretching sheet. PLoS ONE 9(8), e103719 (2014). doi:10.1371/journal.pone.0103719

    Article  Google Scholar 

  49. Khan, W.A., Khan, M., Malik, R.: Three-dimensional flow of an Oldroyd-B nanofluid towards stretching surface with heat generation/absorption. PLoS ONE 9(8), e105107 (2014). doi:10.1371/journal.pone.0105107

    Article  Google Scholar 

  50. Sher Akbar, N., Ebaid, A., Khan, Z.H.: Numerical analysis of magnetic field on Eyring–Powell fluid flow towards a stretching sheet. J. Magn. Magn. Mater. 382, 355–358 (2015)

    Article  Google Scholar 

  51. Mehmood, R., Nadeem, S., Akbar, N.S.: Oblique stagnation flow of Jeffery fluid over a stretching convective surface: optimal solution. Int. J. Numer. Methods Heat Fluid Flow 25(3), 454–471 (2015)

    Article  MATH  Google Scholar 

  52. Nadeem, S., Akbar, N.S., Khan, Z.H.: Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans. Nanotechnol. 14, 42–50 (2015)

    Article  Google Scholar 

  53. Babuska, I., Guo, B.Q.: The h, p and h–p version of the finite element method: basic theory and applications. Advs. Eng. Softw. 15, 159–174 (1992)

    Article  MATH  Google Scholar 

  54. Khomami, B., Talwar, K.K., Ganpule, H.K.: A comparative study of higher-and lower-order finite element techniques for computation of viscoelastic flows. J. Rheol. 38, 255–289 (1994)

    Article  Google Scholar 

  55. Coleman, B.D., Noll, W.: An approximation theorem for functionals with applications in continuous mechanics. Arch. Ration. Mech. Anal. 6, 355–370 (1960)

    Article  MATH  Google Scholar 

  56. Dunn, J.E., Fosdick, R.L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 56, 191–252 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  57. Fosdick, R.L., Rajagopal, K.R.: Anomalous features in the model of second order fluids. Arch. Ration. Mech. Anal. 70, 145–152 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  58. Dunn, J.E., Rajagopal, K.R.: Fluids of differential type: critical review and thermodynamic analysis. Int. J. Eng. Sci. 33, 689–729 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  59. Troy, W.C., Overman II, E.A., Ermentrout, G.B., Keener, J.P.: Uniqueness of a second order fluid past a stretching sheet. Quart. Appl. Math. 45, 755–793 (1987)

    MathSciNet  MATH  Google Scholar 

  60. McLeod, B., Rajagopal, K.R.: On uniqueness of flow of a Navier–Stokes fluid due to stretching boundary. Arch. Mech. Anal. 98, 393–985 (1987)

    MathSciNet  MATH  Google Scholar 

  61. Chang, W.D.: The non-uniqueness of the flow of viscoelastic fluid over a stretching sheet. Quart. Appl. Math. 47, 365–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wang, C.Y.: Free convection on a vertical stretching surface. J. Appl. Math. Mech. (ZAMM) 69, 418–420 (1989)

    Article  MATH  Google Scholar 

  63. Gorla, R.S.R., Sidawi, I.: Free convection on a vertical stretching surface with suction and blowing. Appl. Sci. Res. 52, 247–257 (1994)

    Article  MATH  Google Scholar 

  64. Nataraja, H.R., Sarma, M.S., Rao, B.N.: Flow of a second-order fluid over a stretching surface having power-law temperature. Acta Mech. 128, 259–262 (1998)

    Article  MATH  Google Scholar 

  65. Mushtaq, M., Asghar, S., Hossain, M.A.: Mixed convection flow of second grade fluid along a vertical stretching flat surface with variable surface temperature. Heat Mass Transf. 43, 1049–1061 (2007)

    Article  Google Scholar 

  66. Liu, I.-C.: Flow and heat transfer of an electrically-conducting fluid of second grade over a stretching sheet subject to a transverse magnetic field. Int. J. Heat Mass Transf. 47, 4427–4437 (2004)

    Article  MATH  Google Scholar 

  67. Norouzi, M., Davoodi, M., Anwar Bég, O.: An analytical solution for convective heat transfer of viscoelastic flows in rotating curved pipes. Int. J. Therm. Sci. 90, 90–111 (2015)

    Article  Google Scholar 

  68. Rana, P., Anwar Bég, O.: Mixed convection flow along an inclined permeable plate: effect of magnetic field, nanolayer conductivity and nanoparticle diameter. Appl. Nanosci. 5(5), 569–581 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Dr. O. Anwar Bég is grateful to the late Professor Howard Brenner (1929-2014) of Chemical Engineering, MIT, USA, for some excellent discussions regarding viscoelastic characteristics of biopolymers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Anwar Bég.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, P., Bhargava, R., Bég, O.A. et al. Finite Element Analysis of Viscoelastic Nanofluid Flow with Energy Dissipation and Internal Heat Source/Sink Effects. Int. J. Appl. Comput. Math 3, 1421–1447 (2017). https://doi.org/10.1007/s40819-016-0184-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0184-5

Keywords

Navigation