Skip to main content
Log in

Management Strategies Based on Multi-Modality Neuromonitoring in Severe Traumatic Brain Injury

  • Review
  • Published:
Neurotherapeutics

Abstract

Secondary brain injury after neurotrauma is comprised of a host of distinct, potentially concurrent and interacting mechanisms that may exacerbate primary brain insult. Multimodality neuromonitoring is a method of measuring multiple aspects of the brain in order to understand the signatures of these different pathomechanisms and to detect, treat, or prevent potentially reversible secondary brain injuries. The most studied invasive parameters include intracranial pressure (ICP), cerebral perfusion pressure (CPP), autoregulatory indices, brain tissue partial oxygen tension, and tissue energy and metabolism measures such as the lactate pyruvate ratio. Understanding the local metabolic state of brain tissue in order to infer pathology and develop appropriate management strategies is an area of active investigation. Several clinical trials are underway to define the role of brain tissue oxygenation monitoring and electrocorticography in conjunction with other multimodal neuromonitoring information, including ICP and CPP monitoring. Identifying an optimal CPP to guide individualized management of blood pressure and ICP has been shown to be feasible, but definitive clinical trial evidence is still needed. Future work is still needed to define and clinically correlate patterns that emerge from integrated measurements of metabolism, pressure, flow, oxygenation, and electrophysiology. Pathophysiologic targets and precise critical care management strategies to address their underlying causes promise to mitigate secondary injuries and hold the potential to improve patient outcome. Advancements in clinical trial design are poised to establish new standards for the use of multimodality neuromonitoring to guide individualized clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):56–87.

  2. Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;1:1–18.

    Google Scholar 

  3. Bragge P, Synnot A, Maas AI, et al. A state-of-the-science overview of randomized controlled trials evaluating acute management of moderate-to-severe traumatic brain injury. J Neurotrauma. 2016;33:1461–78.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thornhill S, Teasdale GM, Murray GD, et al. Disability in young people and adults one year after head injury: prospective cohort study. BMJ. 2000;320(7250):1631–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chesnut RM, Marshall LF, Klauber MR, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34(2):216–22.

    Article  CAS  PubMed  Google Scholar 

  6. van Santbrink H, Maas AI, Avezaat CJ. Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery. 1996;38(1):21–31.

    Article  PubMed  Google Scholar 

  7. Robertson CS, Valadka AB, Hannay HJ, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27(10):2086–95.

    Article  CAS  PubMed  Google Scholar 

  8. Zeiler FA, Thelin EP, Helmy A, et al. A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome. Acta Neurochir (Wien). 2017;159:2245–73.

    Article  PubMed  Google Scholar 

  9. Kochanek PM, Clark RS, Ruppel RA, et al. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: lessons learned from the bedside. Pediatr Crit Care Med. 2000;1(1):4–19.

    Article  PubMed  Google Scholar 

  10. Lazaridis C. Cerebral oxidative metabolism failure in traumatic brain injury: “brain shock.” J Crit Care. 2017;37:230–3.

    Article  CAS  PubMed  Google Scholar 

  11. Foreman B, Ngwenya LB. Sustainability of applied intracranial multimodality neuromonitoring after severe brain injury. World Neurosurg. 2019;124:378–80.

    Article  PubMed  Google Scholar 

  12. Lazaridis C. Brain shock-toward pathophysiologic phenotyping in traumatic brain injury. Crit Care Explor. 2022;4(7): e0724.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lazaridis C, Robertson CS. The role of multimodal invasive monitoring in acute traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):509–17.

    Article  PubMed  Google Scholar 

  14. Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80:6–15.

  15. Hawryluk GWJ, Aguilera S, Buki A, et al. A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019;45:1783–94.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cnossen MC, Huijben JA, van der Jagt M, et al. CENTER-TBI Investigators: variation in monitoring and treatment policies for in- tracranial hypertension in traumatic brain injury: a survey in 66 neu- rotrauma centers participating in the CENTER-TBI study. Crit Care. 2017;21:233.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sivakumar S, Taccone FS, Rehman M, et al. Hemodynamic and neuro-monitoring for neurocritically ill patients: an international survey of intensivists. J Crit Care. 2017;39:40–7.

    Article  PubMed  Google Scholar 

  18. Alvarado-Dyer R, Aguilera S, Chesnut RM, et al. Managing severe traumatic brain injury across resource settings: Latin American perspectives. Neurocrit Care. 2023;12:1–6.

    Google Scholar 

  19. Godoy DA, Carrizosa J, Aguilera S, et al. Latin America Brain Injury Consortium (LABIC) members. Current practices for intracranial pressure and cerebral oxygenation monitoring in severe traumatic brain injury: a Latin American survey. Neurocrit Care. 2023;38(1):171–177.

  20. Sorrentino E, Diedler J, Kasprowicz M, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16(2):258–66.

    Article  CAS  PubMed  Google Scholar 

  21. Marmarou A, Anderson RL, Ward JD, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75(Suppl):S59–66.

    Article  Google Scholar 

  22. Stocchetti N, Zanaboni C, Colombo A, et al. Refractory intracranial hypertension and “second tier” therapies in traumatic brain injury. Intensive Care Med. 2008;34:461–7.

    Article  PubMed  Google Scholar 

  23. Stocchetti N, Maas AI. Traumatic intracranial hypertension. N Engl J Med. 2014;370(22):2121–30.

    Article  PubMed  Google Scholar 

  24. Patel HC, Menon DK, Tebbs S, et al. Specialist neurocritical care and outcome from head injury. Intensive Care Med. 2002;28(5):547–53.

    Article  PubMed  Google Scholar 

  25. Bulger EM, Nathens AB, Rivara FP, et al. Brain trauma foundation. Management of severe head injury: institutional variations in care and effect on outcome. Crit Care Med. 2002;30(8):1870–6.

  26. Elf K, Nilsson P, Enblad P. Outcome after traumatic brain injury improved by an organized secondary insult program and standardized neurointensive care. Crit Care Med. 2002;30(9):2129–34.

    Article  PubMed  Google Scholar 

  27. Fakhry SM, Trask AL, Waller MA, et al. Management of brain-injured patients by an evidence-based medicine protocol improves outcomes and decreases hospital charges. J Trauma. 2004;56(3):492–9; discussion 499–500.

  28. Alali AS, Fowler RA, Mainprize TG, et al. Intracranial pressure monitoring in severe traumatic brain injury: results from the American College of Surgeons Trauma Quality Improvement Program. J Neurotrauma. 2013;30:1737–46.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rønning P, Helseth E, Skaga NO, et al. The effect of ICP monitoring in severe traumatic brain injury: a propensity score-weighted and adjusted regression approach. J Neurosurg. 2018;131(6):1896–904.

    Article  PubMed  Google Scholar 

  30. Cremer OL, van Dijk GW, van Wensen E, et al. Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med. 2005;33(10):2207–13.

    Article  PubMed  Google Scholar 

  31. Shafi S, Diaz-Arrastia R, Madden C, et al. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma. 2008;64(2):335–40.

    PubMed  Google Scholar 

  32. Ahl R, Sarani B, Sjolin G, et al. The association of intracranial pressure monitoring and mortality: a propensity score-matched cohort of isolated severe blunt traumatic brain injury. J Emerg Trauma Shock. 2019;12(1):18–22.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Khormi YH, Senthilselvan A, O'kelly C, et al. Adherence to brain trauma foundation guidelines for intracranial pressure monitoring in severe traumatic brain injury and the effect on outcome: a population-based study. Surg Neurol Int. 2020;11:118.

  34. Delaplain PT, Grigorian A, Lekawa M, et al. Intracranial pressure monitoring associated with increased mortality in pediatric brain injuries. Pediatr Surg Int. 2020;36(3):391–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chesnut RM, Temkin N, Carney N, et al. Global neurotrauma research group. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81.

  36. Hawryluk GWJ, Nielson JL, Huie JR, et al. Analysis of normal high-frequency intracranial pressure values and treatment threshold in neurocritical care patients: insights into normal values and a potential treatment threshold. JAMA Neurol. 2020;77(9):1150–8.

    Article  PubMed  Google Scholar 

  37. Lazaridis C, Desai M, Damoulakis G, et al. Intracranial pressure threshold heuristics in traumatic brain injury: one, none, many! neurocrit care. 2020;32(3):672–676.

  38. Chesnut RM, Videtta W. Situational intracranial pressure management: an argument against a fixed treatment threshold. Crit Care Med. 2020;48(8):1214–6.

    Article  PubMed  Google Scholar 

  39. Lazaridis C, Goldenberg FD. Intracranial pressure in traumatic brain injury: from thresholds to heuristics. Crit Care Med. 2020;48(8):1210–3.

    Article  PubMed  Google Scholar 

  40. Czosnyka M, Pickard JD, Steiner LA. Principles of intracranial pressure monitoring and treatment. Handb Clin Neurol. 2017;140:67–89.

    Article  CAS  PubMed  Google Scholar 

  41. Czosnyka M, Smielewski P, Kirkpatrick P, et al. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11–7; discussion 17–9.

  42. Brady KM, Lee JK, Kibler KK, et al. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke. 2008;39(9):2531–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.

    Article  PubMed  Google Scholar 

  44. Aries MJ, Czosnyka M, Budohoski KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40(8):2456–63.

    Article  PubMed  Google Scholar 

  45. Lazaridis C, DeSantis SM, Smielewski P, et al. Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. J Neurosurg. 2014;120(4):893–900.

    Article  PubMed  Google Scholar 

  46. Zeiler FA, Ercole A, Cabeleira M, et al. High resolution ICU sub-study participants and investigators. Patient-specific ICP epidemiologic thresholds in adult traumatic brain injury: a CENTER-TBI validation study. J Neurosurg Anesthesiol. 2021;33(1):28–38.

  47. Lazaridis C, Smielewski P, Menon DK, et al. Patient-specific thresholds and doses of intracranial hypertension in severe traumatic brain injury. Acta Neurochir Suppl. 2016;122:117–20.

    Article  PubMed  Google Scholar 

  48. Depreitere B, Citerio G, Smith M, et al. Cerebrovascular autoregulation monitoring in the management of adult severe traumatic brain injury: a Delphi consensus of clinicians. Neurocrit Care. 2021;34(3):731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lazaridis C. Cerebral autoregulation: the concept the legend the promise. Neurocrit Care. 2021;34(3):717–9.

    Article  PubMed  Google Scholar 

  50. Tas J, Beqiri E, van Kaam RC, et al. Targeting autoregulation-guided cerebral perfusion pressure after traumatic brain injury (COGiTATE): a feasibility randomized controlled clinical trial. J Neurotrauma. 2021;38(20):2790–800.

    Article  PubMed  Google Scholar 

  51. Lazaridis C, Rusin CG, Robertson CS. Secondary brain injury: predicting and preventing insults. Neuropharmacology. 2019;145(Pt B):145–52.

    Article  CAS  PubMed  Google Scholar 

  52. Myers RB, Lazaridis C, Jermaine CM, et al. Predicting intracranial pressure and brain tissue oxygen crises in patients with severe traumatic brain injury. Crit Care Med. 2016;44(9):1754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McNamara R, Meka S, Anstey J, et al. Development of traumatic brain injury associated intracranial hypertension prediction algorithms: a narrative review. J Neurotrauma. 2023;40(5–6):416–34.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Carra G, Güiza F, Depreitere B, et al. Prediction model for intracranial hypertension demonstrates robust performance during external validation on the CENTER-TBI dataset. Intensive Care Med. 2021;47(1):124–6.

    Article  PubMed  Google Scholar 

  55. Lazaridis C, Ajith A, Mansour A, et al. Prediction of intracranial hypertension and brain tissue hypoxia utilizing high-resolution data from the BOOST-II clinical trial. Neurotrauma Rep. 2022;3(1):473–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Carra G, Güiza F, Piper I, et al. Development and external validation of a machine learning model for the early prediction of doses of harmful intracranial pressure in patients with severe traumatic brain injury. J Neurotrauma. 2023;40(5–6):514–22.

    Article  PubMed  Google Scholar 

  57. Clark LC. Monitor and control of blood and tissue oxygen tensions. Trans Am Soc Artif Int Org. 1956;2:41–5.

    Google Scholar 

  58. Foreman B, Ngwenya LB, Stoddard E, et al. Safety and reliability of bedside, single burr hole technique for intracranial multimodality monitoring in severe traumatic brain injury. Neurocrit Care. 2018;29(3):469–80.

    Article  PubMed  Google Scholar 

  59. Ngwenya LB, Burke JF, Manley GT. Brain tissue oxygen monitoring and the intersection of brain and lung: a comprehensive review. Respir Care. 2016;61(9):1232–44.

    Article  PubMed  Google Scholar 

  60. Haitsma IK, Maas AI. Advanced monitoring in the intensive care unit: brain tissue oxygen tension. Curr Opin Crit Care. 2002;8(2):115–20.

    Article  PubMed  Google Scholar 

  61. Nortje J, Gupta AK. The role of tissue oxygen monitoring in patients with acute brain injury. Br J Anaesth. 2006;97(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  62. Gupta AK, Hutchinson PJ, Fryer T, et al. Measurement of brain tissue oxygenation performed using positron emission tomography scanning to validate a novel monitoring method. J Neurosurg. 2002;96(2):263–8.

    Article  PubMed  Google Scholar 

  63. Menon DK, Coles JP, Gupta AK, et al. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32(6):1384–90.

    Article  PubMed  Google Scholar 

  64. Diringer MN, Aiyagari V, Zazulia AR, et al. Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury. J Neurosurg. 2007;106(4):526–9.

    Article  PubMed  Google Scholar 

  65. Rosenthal G, Hemphill JC 3rd, Sorani M, et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36(6):1917–24.

    Article  CAS  PubMed  Google Scholar 

  66. Launey Y, Fryer TD, Hong YT, et al. Spatial and temporal pattern of ischemia and abnormal vascular function following traumatic brain injury. JAMA Neurol. 2020;77(3):339–49.

    Article  PubMed  Google Scholar 

  67. Valadka AB, Gopinath SP, Contant CF, et al. Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med. 1998;26(9):1576–81.

    Article  CAS  PubMed  Google Scholar 

  68. Nangunoori R, Maloney-Wilensky E, Stiefel M, et al. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review. Neurocrit Care. 2012;17(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  69. van den Brink WA, van Santbrink H, Steyerberg EW, et al. Brain oxygen tension in severe head injury. Neurosurgery. 2000;46(4):868–76; discussion 876–8.

  70. Okonkwo DO, Shutter LA, Moore C, et al. Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial. Crit Care Med. 2017;45(11):1907–14.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hutchinson PJ, Jalloh I, Helmy A, et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015;41:1517–28.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Le Roux P, Menon DK, Citerio G, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014;21 Suppl 2:1.

  73. Venturini S, Bhatti F, Timofeev I, et al. Microdialysis-based classifications of abnormal metabolic states after traumatic brain injury: a systematic review of the literature. J Neurotrauma. 2023;40:195–209.

    Article  PubMed  Google Scholar 

  74. Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–74.

    Article  CAS  PubMed  Google Scholar 

  75. Vespa P, Tubi M, Claassen J, et al. Metabolic crisis occurs with seizures and periodic discharges after brain trauma. Ann Neurol. 2016;79:579–90.

    Article  PubMed  Google Scholar 

  76. Hinzman JM, Wilson JA, Mazzeo AT, et al. Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. J Neurotrauma. 2016;33:1775–83.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36:2871–7.

    Article  CAS  PubMed  Google Scholar 

  78. Bernini A, Magnoni S, Miroz J, et al. Cerebral metabolic dysfunction at the acute phase of traumatic brain injury correlates with long-term tissue loss. J Neurotrauma. 2023;40:472–81.

    Article  PubMed  Google Scholar 

  79. Gupta D, Singla R, Mazzeo AT, et al. Detection of metabolic pattern following decompressive craniectomy in severe traumatic brain injury: a microdialysis study. Brain Inj. 2017;31:1660–6.

    Article  PubMed  Google Scholar 

  80. Rostami E. Glucose and the injured brain-monitored in the neurointensive care unit. Front Neurol. 2014;5:91.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Oddo M, Schmidt JM, Carrera E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.

    Article  CAS  PubMed  Google Scholar 

  82. Oddo M, Villa F, Citerio G. Brain multimodality monitoring: an update. Curr Opin Crit Care. 2012;18:111–8.

    Article  PubMed  Google Scholar 

  83. Kurtz P, Claassen J, Schmidt JM, et al. Reduced brain/serum glucose ratios predict cerebral metabolic distress and mortality after severe brain injury. Neurocrit Care. 2013;19:311–9.

    Article  CAS  PubMed  Google Scholar 

  84. Lazaridis C, Andrews CM. Brain tissue oxygenation, lactate-pyruvate ratio, and cerebrovascular pressure reactivity monitoring in severe traumatic brain injury: systematic review and viewpoint. Neurocrit Care. 2014;21:345–55.

    Article  CAS  PubMed  Google Scholar 

  85. Vespa P, McArthur DL, Stein N, et al. Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med. 2012;40:1923–9.

    Article  CAS  PubMed  Google Scholar 

  86. Quintard H, Patet C, Zerlauth J, et al. Improvement of neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. J Neurotrauma. 2016;33:681–7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bouzat P, Sala N, Suys T, et al. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med. 2014;40:412–21.

    Article  CAS  PubMed  Google Scholar 

  88. Stovell MG, Mada MO, Helmy A, et al. The effect of succinate on brain NADH/NAD(+) redox state and high energy phosphate metabolism in acute traumatic brain injury. Sci Rep. 2018;8:11140–3.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Khellaf A, Garcia NM, Tajsic T, et al. Focally administered succinate improves cerebral metabolism in traumatic brain injury patients with mitochondrial dysfunction. J Cereb Blood Flow Metab. 2022;42:39–55.

    Article  CAS  PubMed  Google Scholar 

  90. Claassen J, Taccone FS, Horn P, et al. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med. 2013;39:1337–51.

    Article  CAS  PubMed  Google Scholar 

  91. Herman ST, Abend NS, Bleck TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32:87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Brophy GM, Bell R, Claassen J, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17:3–23.

    Article  PubMed  Google Scholar 

  93. Lee H, Mizrahi MA, Hartings JA, et al. Continuous electroencephalography after moderate to severe traumatic brain injury. Crit Care Med. 2019;47:574–82.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Strong AJ, Fabricius M, Boutelle MG, et al. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke. 2002;33:2738–43.

    Article  PubMed  Google Scholar 

  95. Dreier JP, Fabricius M, Ayata C, et al. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: review and recommendations of the COSBID research group. J Cereb Blood Flow Metab. 2017;37:1595–625.

    Article  PubMed  Google Scholar 

  96. Waziri A, Claassen J, Stuart RM, et al. Intracortical electroencephalography in acute brain injury. Ann Neurol. 2009;66:366–77.

    Article  PubMed  Google Scholar 

  97. Wang B, Chiu H, Luh H, et al. Comparative efficacy of prophylactic anticonvulsant drugs following traumatic brain injury: a systematic review and network meta-analysis of randomized controlled trials. PLoS ONE. 2022;17: e0265932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Foreman B, Lee H, Mizrahi MA, et al. Seizures and cognitive outcome after traumatic brain injury: a post hoc analysis. Neurocrit Care. 2022;36:130–8.

    Article  PubMed  Google Scholar 

  99. Foreman B, Lee H, Okonkwo DO, et al. The relationship between seizures and spreading depolarizations in patients with severe traumatic brain injury. Neurocrit Care. 2022;37:31–48.

    Article  PubMed  Google Scholar 

  100. Hartings JA, Shuttleworth CW, Kirov SA, et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J Cereb Blood Flow Metab. 2017;37:1571–94.

    Article  PubMed  Google Scholar 

  101. Hartings JA. Spreading depolarization monitoring in neurocritical care of acute brain injury. Curr Opin Crit Care. 2017;23:94–102.

    Article  PubMed  Google Scholar 

  102. Hartings JA, Wilson JA, Hinzman JM, et al. Spreading depression in continuous electroencephalography of brain trauma. Ann Neurol. 2014;76:681–94.

    Article  PubMed  Google Scholar 

  103. Hartings JA, Bullock MR, Okonkwo DO, et al. Spreading depolarizations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol. 2011;10:1058–64.

    Article  PubMed  Google Scholar 

  104. Hartings JA, Andaluz N, Bullock MR, et al. Prognostic value of spreading depolarizations in patients with severe traumatic brain injury. JAMA Neurol. 2020;77:489–99.

    Article  PubMed  Google Scholar 

  105. Helbok R, Hartings JA, Schiefecker A, et al. What should a clinician do when spreading depolarizations are observed in a patient? Neurocrit Care. 2020;32:306–10.

    Article  PubMed  Google Scholar 

  106. Carlson AP, Abbas M, Alunday RL, et al. Spreading depolarization in acute brain injury inhibited by ketamine: a prospective, randomized, multiple crossover trial. J Neurosurg. 2018;1–7.

  107. Gaspard N, Foreman B, Judd LM, et al. Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia. 2013;54:1498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alkhachroum A, Der-Nigoghossian CA, Mathews E, et al. Ketamine to treat super-refractory status epilepticus. Neurology. 2020;95:e2286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tas J, Czosnyka M, van der Horst ICC, et al. Cerebral multimodality monitoring in adult neurocritical care patients with acute brain injury: a narrative review. Front Physiol. 2022;1(13):1071161.

    Article  Google Scholar 

  110. Sekhon MS, Gooderham P, Toyota B, et al. Implementation of neurocritical care is associated with improved outcomes in traumatic brain injury. Can J Neurol Sci. 2017;44(4):350–7.

    Article  PubMed  Google Scholar 

  111. Bernard F, Barsan W, Diaz-Arrastia R, et al. Brain oxygen optimization in severe traumatic brain injury (BOOST-3): a multicentre, randomised, blinded-endpoint, comparative effectiveness study of brain tissue oxygen and intracranial pressure monitoring versus intracranial pressure alone. BMJ Open. 2022;12(3): e060188.

    Article  PubMed  PubMed Central  Google Scholar 

  112. BONANZA-ANZICS [Internet]. 2021. https://www.anzics.com.au/current-active-endorsed-research/bonanza/. Accessed 1 April 2023.

  113. Payen JF, Richard M, Francony G, et al. Comparison of strategies for monitoring and treating patients at the early phase of severe traumatic brain injury: the multicenter randomized controlled OXY-TC trial study protocol. BMJ Open. 2020;10(8): e040550.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Daly S, Thorpe M, Rockswold S, et al. Hyperbaric oxygen therapy in the treatment of acute severe traumatic brain injury: a systematic review. J Neurotrauma. 2018;35(4):623–9.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rockswold SB, Rockswold GL, Zaun DA, et al. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg. 2010;112(5):1080–94.

    Article  CAS  PubMed  Google Scholar 

  116. Rockswold SB, Rockswold GL, Vargo JM, et al. Effects of hyperbaric oxygenation therapy on cerebral metabolism and intracranial pressure in severely brain injured patients. J Neurosurg. 2001;94(3):403–11.

    Article  CAS  PubMed  Google Scholar 

  117. Daugherty WP, Levasseur JE, Sun D, et al. Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats. J Neurosurg. 2004;101(3):499–504.

    Article  PubMed  Google Scholar 

  118. Gajewski BJ, Berry SM, Barsan WG, et al. Hyperbaric oxygen brain injury treatment (HOBIT) trial: a multifactor design with response adaptive randomization and longitudinal modeling. Pharm Stat. 2016;15(5):396–404.

    Article  PubMed  Google Scholar 

  119. Hartings JA, Strong AJ, Fabricius M, et al. Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma. 2009;26:1857–66.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Schiefecker AJ, Kofler M, Gaasch M, et al. Brain temperature but not core temperature increases during spreading depolarizations in patients with spontaneous intracerebral hemorrhage. J Cereb Blood Flow Metab. 2018;38:549–58.

    Article  PubMed  Google Scholar 

  121. von Bornstadt D, Houben T, Seidel JL, et al. Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origins of spreading injury depolarizations. Neuron. 2015;85:1117–31.

    Article  Google Scholar 

  122. Carlson AP, Davis HT, Jones T, et al. Is the human touch always therapeutic? Patient stimulation and spreading depolarization after acute neurological injuries. Transl Stroke Res. 2023;14:160–73.

    Article  CAS  PubMed  Google Scholar 

  123. Hertle DN, Dreier JP, Woitzik J, et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain. 2012;135:2390–8.

    Article  PubMed  Google Scholar 

  124. Hartings JA, Dreier JP, Ngwenya LB, et al. improving neurotrauma by depolarization inhibition with combination therapy: a phase 2 randomized feasibility trial. Neurosurgery. 2023 Apr 21. Epub ahead of print.

  125. Thakkar AB, Desai SP. Swan, Ganz, and their catheter: its evolution over the past half century. Ann Intern Med. 2018;169:636–42.

    Article  PubMed  Google Scholar 

  126. Harvey S, Harrison DA, Singer M, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2012;366:472–7.

    Article  Google Scholar 

  127. Iberti TJ, Fischer EP, Leibowitz AB, et al. A multicenter study of physicians’ knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group JAMA. 1990;264:2928–32.

    CAS  Google Scholar 

  128. Rajaram SS, Desai NK, Kalra A, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2013(2):CD003408.

  129. Wijdicks EFM. Lundberg and his Waves. Neurocrit Care. 2019;31:546–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dirk Traufelder for medical illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Lazaridis.

Ethics declarations

Conflict of Interest

Dr. Lazaridis is the University of Chicago site PI for the BOOST-3 clinical trial. Dr. Lazaridis is supported by the Department of Defense CDMRP Log Number: TP210464 Grants.gov ID Number: GRANT13518109 for Prediction and Prevention of Intracranial Hypertension. Dr. Foreman is co-investigator for the INDICT clinical trial (DOD JW200215) and is supported by DOD grants JW200215 and W81XWH1920013. Dr. Foreman receives honoraria and serves on the speaker’s bureau for UCB Pharma, and scientific advisory boards for SAGE Therapeutics and Marinus Pharmaceuticals. He is an unpaid member of the scientific advisory committee for the Neurocritical Care Society Curing Coma Campaign.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is an invited review for The Next Generation of Clinical Trials for Traumatic Brain Injury.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazaridis, C., Foreman, B. Management Strategies Based on Multi-Modality Neuromonitoring in Severe Traumatic Brain Injury. Neurotherapeutics 20, 1457–1471 (2023). https://doi.org/10.1007/s13311-023-01411-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01411-2

Keywords

Navigation