Skip to main content

Advertisement

Log in

Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

In previous work, our research group isolated and bred a γ-aminobutyric acid (GABA)-producing microorganism, Lactobacillus brevis CGMCC 1306, from fresh unpasteurized milk and found that the strain possessed high glutamate decarboxylase (GAD) activity. However, the cells of the strain grew poorly during submerged fermentation, with the highest dry cell weight only 2.78 g/L. To enhance the efficiency of GABA biosynthesis and achieve GAD production in high cell-density fermentations, the gad gene from L. brevis CGMCC 1306 was cloned using degenerate PCR. Nucleotide sequencing analysis showed that the cloned gene comprised 1407 bp and encoded a 468-amino acid protein. The gad gene with a hexa-His tag was inserted into pET-28a(+) and expressed in Escherichia coli BL21. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the recombinant protein product had a molecular weight of approximately 53 kDa, which corresponded to the predicted size of the deduced protein (53.47 kDa). High-performance liquid chromatography analysis showed that the purified recombinant protein was capable of catalyzing α-decarboxylation of L-sodium glutamate into GABA, which confirmed that the protein was derived from a gad gene. GAD activity was the highest at pH 4.8 and 48°C. Using Lineweaver–Burk plots, the K m and V max of the recombinant enzyme were 10.26 mM and 8.86 U/mg, respectively. Its activity was not dependent on the addition of pyridoxal 5'-phosphate. These results strongly suggest that cloning of the gad gene is not only of interest to researchers in terms of affecting GAD production by protein engineering strategies, but that it may increase GAD production by high cell-density fermentation and enhance the efficiency of GABA biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adeghate E, Ponery AS (2002) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Battaglioli G, Liu H, Martin DL (2003) Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis. J Neurochem 86(4):879–887

    Article  PubMed  CAS  Google Scholar 

  • Bingley PJ (2010) Clinical applications of diabetes antibody testing. J Clin Endocrinol Metab 95(1):25–33

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Li D, Lv JX (1997) Determination of γ-aminobutyric acid and glutamic acid in human cerebrospinal fluid by high performance liquid chromatography (in Chinese). Chin J Chromatogr 15(3):237–239

    CAS  Google Scholar 

  • Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298(5597):1418–1421

    Article  PubMed  CAS  Google Scholar 

  • Hiraga K, Ueno YH, Oda KH (2008) Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Biosci Biotechnol Biochem 72(5):1299–1306

    Article  PubMed  CAS  Google Scholar 

  • Huang J (2007) Process study on the preparation of γ-aminobutyric acid by Lactobacillus brevis. PhD thesis. Zhejiang University, Xihu, Hangzhou, China

  • Huang J, Mei LH, Xia J (2007) Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA. Biotechnol Bioeng 96(5):924–931

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Mei LH, Sheng Q, Xu J, Wu H (2008) Optimization of γ-aminobutyric acid liquid fermentation conditions and fed-batch fermentation (in Chinese). J Chem Eng Chin Univ 22(4):618–624

    CAS  Google Scholar 

  • Kawalleck P, Keller H, Hahlbrock K, Scheel D, Somssich IE (1993) A pathogen-responsive gene of parsley encodes tyrosine decarboxylase. J Biol Chem 268(3):2189–2194

    PubMed  CAS  Google Scholar 

  • Kim SH, Shin BH, Kim YH, Nam SW, Jeon SJ (2007) Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnol Bioprocess Eng 12(6):707–712

    Article  Google Scholar 

  • Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T (2005) Production of gamma-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22(6):497–504

    Article  CAS  Google Scholar 

  • Krieg NR, Holt JG, Murray RGE (1984) Bergey’s manual of systematic bacteriology, Vol. 1 and 2. Williams and Wilkins, Baltimore

  • Krnjevic K (1974) Chemical nature of synaptic transmission in vertebrates. Physiol Rev 54(2):418–540

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277(5259):680–683

    Article  Google Scholar 

  • Li HX, Cao YS (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39(5):1107–1116

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Yang SY, Lu FX, Lu ZX, Bie XM, Jiao Y, Zou XK (2009) Cloning and expression of glutamate decarboxylase gene from Streptococcus thermophilus Y2. J Gen Appl Microbiol 55(4):305–310

    Article  PubMed  CAS  Google Scholar 

  • Linhart C, Shamir R (2005) The degenerate primer design problem: theory and applications. J Comput Biol 12(4):431–456

    Article  PubMed  CAS  Google Scholar 

  • Martin DL, Rimvall K (1993) Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 60(2):395–407

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG (1996) Structural classification of proteins: new superfamilies. Curr Opin Struct Biol 6(3):386–394

    Article  PubMed  CAS  Google Scholar 

  • Park KB, Oh SH (2004) Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus plantarum. J Food Sci Nutr 9:324–329

    Article  CAS  Google Scholar 

  • Park KB, Oh SH (2007) Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresour Technol 98(2):312–319

    Article  PubMed  CAS  Google Scholar 

  • Preston GM (2003) Cloning gene family members using PCR with degenerate oligonucleotide primers. Methods Mol Biol 226:485–498

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto M, Takeuchi Y, Umeda M, Ishikawa I, Benno Y (2003) Application of terminal RFLP analysis to characterize oral bacterial flora in saliva of healthy subjects and patients with periodontitis. J Med Microbiol 52(1):79–89

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Seok JH, Park KB, Kim YH, Bae MO, Lee MK, Oh SH (2008) Production and characterization of Kimchi with enhanced levels of gamma-aminobutyric acid. Food Sci Biotechnol 17(5):940–946

    CAS  Google Scholar 

  • Siragusa S, Angelis MD, Cagno RD, Rizzello CG, Coda R, Gobbetti M (2007) Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73(22):7283–7290

    Article  PubMed  CAS  Google Scholar 

  • Tsai JS, Lin YS, Pan BS, Chen TJ (2006) Antihypertensive peptides and gamma-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochem 41(6):1282–1288

    Article  CAS  Google Scholar 

  • Ueno H (2000) Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B Enzym 10(1–3):67–79

    Article  CAS  Google Scholar 

  • Ueno Y, Hayakawa K, Takahashi S, Oda K (1997) Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem 61(7):1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Wang HF, Chuang SM, Hsiao CC, Cherng SH (2011a) A synergistic effect of GABA tea and copper(II) on DNA breakage in human peripheral lymphocytes. Food Chem Toxicol 49(4):955–962

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Xin YQ, Zhang F, Feng ZY, Fu J, Luo L, Yin ZM (2011b) Enhanced c-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli. World J Microbiol Biotechnol 27(3):693–700

    Article  Google Scholar 

  • Xia J, Mei LH, Huang J, Sheng Q, Xu J, Wu H (2006) Screening and mutagenesis of Lactobacillus brevis for biosynthesis of γ-aminobutyric acid (in Chinese). J Nucl Agric Sci 20(5):379–382

    CAS  Google Scholar 

  • Yang SY, Lin Q, Lu ZX, Lü FX, Bie XM, Zou XK, Sun LJ (2008) Characterization of a novel glutamate decarboxylase from Streptococcus salivarius ssp. thermophilus Y2. J Chem Technol Biotechnol 83(6):855–861

    Article  CAS  Google Scholar 

  • Zhang H, Yao HY, Chen F (2006) Accumulation of gamma-aminobutyric acid in rice germ using protease. Biosci Biotechnol Biochem 70(5):1160–1165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (NO. 20876143 and 30970638), and the National Basic Research Program of China (2007CB714305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lehe Mei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, E., Huang, J., Hu, S. et al. Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. Ann Microbiol 62, 689–698 (2012). https://doi.org/10.1007/s13213-011-0307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0307-5

Keywords

Navigation