Skip to main content

Advertisement

Log in

Enhanced γ-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

γ-aminobutyric acid (GABA) is an important bioactive regulator, and its biosynthesis is primarily through the α-decarboxylation of glutamate by glutamate decarboxylase (GAD). The procedures to obtain GABA by bioconvertion with high activity recombinant Escherichia coli GAD have been seldom understood. In this study, Escherichia coli GAD (gadA) was highly expressed (about 70–75% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-gadA, which was induced by 0.4 mM IPTG in LB medium, and maximal GABA-forming activity of the recombinant GAD was 40 U/mL at a concentration (0.15 mM) of pyridoxal phosphate (PLP) and a concentration (0.6 mM) of Ca2+ at optimal pH of 3.8. The optimal concentration (7.5 mM) of Mn2+ can also improve the activity of recombinant enzyme, but the co-effect of Ca2+ and Mn2+ exhibited antagonism effect when added simultaneously. LB and 0.1% (w/v) lactose were selected as culture medium and inducer, respectively. The relative activity was markedly higher activated by Ca2+ (174%), Mn2+ (164%) than that by other seven bivalent cations. Finally, the yield of GABA was high of 94 g/L detected by paper chromatography or HPLC in 1 L reaction system with 30 mL crude GAD (12 U/mL). By entrapping Escherichia coli glutamate decarboxylase into sodium alginate and carrageenan gel beads, the activity of immobilized GAD (IGAD) remained 85% during the initial five batches and the activity still remained 50% at the tenth batch, these results indicated that the recombinant Escherichia coli GAD was feasible for the future industrial production of GABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adeghate E, Ponery AS (2002) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34:1–6. doi:10.1054/tice.2002.0217

    Article  CAS  Google Scholar 

  • Bai QY, Chai MQ, Gu ZX, Cao XH, Li Y, Liu KL (2009) Effects of components in culture medium on glutamate decarboxylase activity and γ-aminobutyric acid accumulation in foxtail millet (Setaria italica L.) during germination. Food Chem 116:152–157. doi:10.1007/s00217-008-0920-0

    Google Scholar 

  • Bartlett PN, Cooper JM (1993) A review of the immobilization of enzymes in electropolymerized films. J Electroanal Chem 362:1–12. doi:10.1016/0022-0728(93)80001-X

    Article  CAS  Google Scholar 

  • Battaglioli G, Liu H, Martin DL (2003) Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis. J Neurochem 86:879–887. doi:10.1046/j.1471-4159.2003.01910.x

    Article  CAS  Google Scholar 

  • Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H (1993) A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J Biol Chem 268:19610–19617

    CAS  Google Scholar 

  • Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15:2988–2996

    CAS  Google Scholar 

  • Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Grütter MG (2003) Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J 22:4027–4037. doi:10.1093/emboj/cdj403

    Article  CAS  Google Scholar 

  • Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535

    CAS  Google Scholar 

  • Chen XX, Li D, Lv JX, Fang F (1997) Determination of γ-aminobutyric acid and glutamic acid in human cerebrospinal fluid by high performance liquid chromatography (in Chinese). Chin J Chromatogr 15:237–239. doi:1000-8713.0.1997-03-016

    CAS  Google Scholar 

  • Choi SI, Lee JW, Park SM, Lee MY, Ji GE, Park MS, Heo TR (2006) Improvement of gamma-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. J Microbiol Biotechnol 16:562–568

    CAS  Google Scholar 

  • Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421. doi:10.1126/science.1076510

    Article  CAS  Google Scholar 

  • Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276:244–250. doi:10.1074/jbc.M007103200

    Article  CAS  Google Scholar 

  • Crivici A, Ikura M (1995) Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24:85–116. doi:10.1146/annurev.bb.24.060195.000505

    Article  CAS  Google Scholar 

  • David GK, Michael EM (2003) Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 27:263–290. doi:10.1016/S0168-6445(03)00052-4

    Article  Google Scholar 

  • De Biase D, Tramonti A, Bossa F, Visca P (1999) The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32(6):1198–1211. doi:10.1046/j.1365-2958.1999.01430.x

    Article  Google Scholar 

  • Fitsanakis VA, Aschner M (2005) The importance of glutamate, glycine, and γ-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity. Toxicol Appl Pharmacol 204(3):343–354. doi:10.1016/j.taap.2004.11.013

  • Foester CW, Foester HF (1973) Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination. J Bacteriology 114:1090–1098

    Google Scholar 

  • Hagiwara H, Seki T, Ariga T (2004) The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 68:444–447. doi:10.1271/bbb.68.444

    Article  CAS  Google Scholar 

  • Huang J, Mei LH, Wu H, Lin DQ (2006) Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J Microbiol Biotechnol 23:865–871. doi:10.1007/s11274-006-9311-5

    Article  CAS  Google Scholar 

  • Jakobs C, Jaeken J, Gibson KM (1993) Inherited disorders of GABA metabolism. J Inherit Metab Dis 16:704–715. doi:10.1007/BF00711902

    Article  CAS  Google Scholar 

  • Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504. doi:10.1016/j.fm.2005.01.002

    Article  CAS  Google Scholar 

  • Krnjevic K (1974) Chemical nature of synaptic transmission in vertebrates. Physiol Rev 54:419–540

    Article  Google Scholar 

  • Ling DR, Wu GQ, Wang C, Wang F, Song GQ (2000) The preparation and characterization of an immobilized L-glutamic decarboxylase and its application for determination of L-glutamic acid. Enzyme Microb Technol 27(7):516–521. doi:10.1016/S0141-0229(00)00242-8

    Article  CAS  Google Scholar 

  • Liu Q, Yao HY, Zhang H (2005) Studies on some properties of glutamate decarboxylase from lactic acid bacterium. Food Science 26:100–104. doi:1002-6630.0.2005-04-021 (in Chinese)

    Google Scholar 

  • Marko-Varga G, Dominguez E (1991) Enzymes as analytical tools. Trends Anal Chem 10:290–297. doi:10.1016/0165-9936(91)85007-E

    Article  CAS  Google Scholar 

  • Matsumoto T, Yamaura I, Funatsu M (1986) Purification and properties of glutamate decarboxylase from Squash. Agric Biol Chem 50(6):1413–1417

    CAS  Google Scholar 

  • Nomura M, Kimoto H, Someya Y, Furukawa S, Suzuki I (1998) Production of gamma-aminobutyric acid by cheese starters during cheese ripening. J Dairy Sci 81:1486–1491

    Article  CAS  Google Scholar 

  • Noriyoshi T, Katanori N (2002) Method for producing γ-aminobutyric acid. Jpn Pat, 332134

  • O’Hara T, Rajagopalan R, Heller A (1994) Wired enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal Chem 66:2451–2457. doi:10.1021/ac00087a008

    Article  Google Scholar 

  • Plokhov AY, Gusyatiner MM, Yampolskaya TA, Kaluzhsk VE, Sukhareva BS, Schulga AA (2000) Preparation of gamma-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase. Appl Biochem Biotechnol 88:257–265. doi:10.1385/ABAB:88:1-3:257

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. In: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 880–898

  • Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310. doi:10.1046/j.1365-2958.1998.00676.x

    Article  CAS  Google Scholar 

  • Satyanarayan V, Nair PM (1985) Purification and characterization of glutamate decarboxylase from Solanum tuberosum. Eur J Biochem 150:53–60. doi:10.1111/j.1432-1033.1985.tb08987.x

    Article  CAS  Google Scholar 

  • Satyanarayan V, Nair PM (1990) Metabolism, enzymology and possible roles of γ-aminobutyrate in higher plants. Phytochem 29:367–375. doi:10.1016/0031-9422(90)85081-P

    Article  Google Scholar 

  • Sawai Y, Yamaguchi Y, Miyama D, Yoshitomi H (2001) Cycling treatment of anaerobic and aerobic incubation increases the content of γ-aminobutyric acid in tea shoots. Amino Acids 20:331–334. doi:10.1007/s007260170049

    Article  CAS  Google Scholar 

  • Simonian AL, Badalian IE, Berezov TT, Smirnova IP, Khaduev SH (1994) Flow-injection amperometric biosensor based on immobilized L-lysine-a-oxidase for L-lysine determination. Anal Lett 27:2849–2860. doi:10.1080/00032719408000296

    CAS  Google Scholar 

  • Snedden WA, Koutsia N, Baum G, Fromm H (1996) Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes thecalmodulin binding domain. J Biologi Chem 271:4148–4153. doi:10.1074/jbc.271.8.4148

    Article  CAS  Google Scholar 

  • Sukhareva BS, Tikhonenko AS, Dariĭ EL (1994) Study of the quaternary structure of glutamate carboxylase from Escherichia coli. Mol Biol 28:1407–1411

    CAS  Google Scholar 

  • Tong JC, Mackay IR, Chin J, Law RHP, Fayad K, Rowley MJ (2002) Enzymatic characterization of a recombinant isoform hybrid of glutamic acid decarboxylase (rGAD67/65) expressed in yeast. J Biotech 97:183–190. doi:10.1016/S0168-1656(02)00060-3

    Article  CAS  Google Scholar 

  • Ueno H (2000) Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal 10:67–79. doi:10.1016/S1381-1177(00)00114-4

    Article  CAS  Google Scholar 

  • Warnecke T, Gill YT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 4:1–8. doi:10.1186/1475-2859-4-25

    Article  Google Scholar 

  • Weinstein H, Mehler EL (1994) Ca2+-binding and structural dynamics in the functions of calmodulin. Annu Rev Physiol 56:213–236. doi:10.1146/annurev.ph.56.030194.001241

    CAS  Google Scholar 

  • Wen ML, Zhao YB, Wang CY (1997) Research advances in electro-analytical chemistry for life science. Yunnan Chem Technol 2:3–8. doi:1004-275X.0.1997-02-001 (in Chinese)

    Google Scholar 

  • Woolfolk CA, Shapiro B, Stadtman ER (1966) Regulation of glutamine synthetase I. Purification and properties of glutamine synthetase from Escherichia coli. Arch Biochem Biophys 116:177–192. doi:10.1016/0003-9861(66)90026-9

    Article  CAS  Google Scholar 

  • Wu LG, Liu ME, Zhu CL (1995) Research, and development of biosensors. Prog Chem 7:287–310. doi:113383O6.0.1995-04-002 (in Chinese)

    CAS  Google Scholar 

  • Xie ZD, Bao FW, Li MQ, He BL (1995) Immobilization of porcine pancreatic lipase on macro-porous polymethyl acrylate resin. Ion Exch Adsorp 11:24–29. doi:10015493.0.1995-01-005 (in Chinese)

    CAS  Google Scholar 

  • Yamada H, O’Leary MH (1977) A solvent isotope effect probe for enzyme-mediated proton transfers. J Am Chem Soc 99:1660–1661. doi:10.1021/ja00447a071

    Article  CAS  Google Scholar 

  • Yokoyama S, Hiramatsu J, Hayakawa K (2002) Production of gamma-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO–12005. J Biosci Bioeng 93:95–97. doi:10.1016/S1389-1723(02)80061-5

    CAS  Google Scholar 

  • Zhang H, Yao HY, Chen F, Wang X (2007) Purification and characterization of glutamate decarboxylase from rice germ. Food Chem 101:1670–1676. doi:10.1016/j.foodchem.2006.04.027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the special funding from NJNU for talent faculty. We thank zhili Liu, associate professor, for performing the HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Luo or Zhimin Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Xin, Y., Zhang, F. et al. Enhanced γ-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli . World J Microbiol Biotechnol 27, 693–700 (2011). https://doi.org/10.1007/s11274-010-0508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0508-2

Keywords

Navigation