Skip to main content
Log in

Cloning and expression of a full-length glutamate decarboxylase gene fromLactobacillus brevis BH2

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A bacterium (BH2) that was found to produce a large amount of γ-aminobutyric acid (GABA) was isolated fromKimchi, a traditional fermented food in Korea. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that BH2 belonged to the genusLactobacillus brevis. Under controlled conditions in MRS broth (Difco) with 5% monosodium glutamate, this strain produced GABA at a concentration of 194 mM with a 73% GABA conversion rate after 48 h. A full-length glutamate decarboxylase (gad) gene was cloned by the rapid amplification of cDNA ends (RACE) PCR. The open reading frame (ORF) of thegad gene was composed of 1,407 nucleotides and encoded a protein (468 amino acids) with a predicted molecular weight of 53.5 kDa. The deduced amino acid sequence of GAD fromL. brevis showed 97.5 and 82.7% identities to theL. brevis OPK-3 GAD andL. plantarum WCFS1 GAD, respectively. Thegad gene was expressed inEscherichia coli cells and the expression was confirmed by SDS-PAGE analysis and enzyme activity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, E. and S. Frankel (1950) γ-Aminobutyric acid in brain: Its formation from glutamic acid.J. Biol. Chem. 187: 55–63.

    CAS  Google Scholar 

  2. Bazemore, A. W., K. A. C. Elliott, and E. Florey (1957) Isolation of factor I.J. Neurochem. 1: 334–339.

    Article  CAS  Google Scholar 

  3. Stanton, H. C. (1963) Mode of action of gamma aminobutyric acid on the cardiovascular system.Arch. Int. Pharmacodyn. 143: 195–204.

    CAS  Google Scholar 

  4. Omori, M., T. Yano, J. Okamoto, T. Tsushida, T. Murai, and M. Higuchi (1987) Effect of anaerobically treated tea (Gabaron tea) on blood pressure of spontaneously hypertensive rats.Nippon Nogeikagaku Kaishi 61: 1449–1451.

    Google Scholar 

  5. Adeghate, E. and A. S. Ponery (2002) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats.Tissue Cell 34: 1–6.

    Article  CAS  Google Scholar 

  6. Hagiwara, H., T. Seki, and T. Ariga (2004) The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats.Biosci. Biotechnol. Biochem. 68: 444–447.

    Article  CAS  Google Scholar 

  7. Ueno, H. (2000) Enzymatic and structural aspects on glutamate decarboxylase.J. Mol. Catal. B 10: 67–79.

    Article  CAS  Google Scholar 

  8. Baum, G., S. Lev-Yadun, Y. Fridmann, T. Arazi, H. Katsnelson, M. Zik, and H. Fromm (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants.EMBO J. 15: 2988–2996.

    CAS  Google Scholar 

  9. Foester, C. W. and H. F. Foester (1973) Glutamic acid decarboxylase in spores ofBacillus megaterium and its possible involvement in spore germination.J. Bacteriol. 114: 1090–1098.

    Google Scholar 

  10. Sanders, J. W., K. Leenhouts, J. Burghoorn, J. R. Brands, G. Venema, and J. Kok (1998) A chloride-inducible acid resistance mechanism inLactococcus lactis and its regulation.Mol. Microbiol. 27: 299–310.

    Article  CAS  Google Scholar 

  11. Castanie-Cornet, M. P., T. A. Penfound, D. Smith, J. F. Elliott, and J. W. Foster (1999) Control of acid resistance inEscherichia coli.J. Bacteriol. 181: 3525–3535.

    CAS  Google Scholar 

  12. Kohama, Y., S. Matsumoto, T. Mimura, N. Tanabe, A. Inada, and T. Nakanishi (1987) Isolation and identification of hypotensive principles in red-mold rice.Chem. Pharm. Bull. 35: 2484–2489.

    CAS  Google Scholar 

  13. Park, J. H., S. H. Han, M. K. Shin, K. H. Park, and K. C. Li (2002) Effect of hypertension falling of functional GABA green tea.Kor. J. Med. Corp. Sci. 10: 37–40.

    Google Scholar 

  14. Tsuji, K., T. Ichikawa, N. Tanabe, S. Abe, S. Tarui, and Y. Nakagawa (1992) Antihypertensive activities of Beni-Koji extracts and γ-aminobytyric acid in spontaneously hypertensive rats.Jpn. J. Nutri. 50: 285–290.

    CAS  Google Scholar 

  15. Cross, M. L. (2004) Immune-signalling by orally-delivered probiotic bacteria: Effects on common mucosal immunoresponses and protection at distal mucosal sites.Int. J. Immunopathol. Pharmacol. 17: 127–134.

    CAS  Google Scholar 

  16. Park, K. B. and S. H. Oh (2004) Cloning and expression of a full-length glutamate decarboxylase gene fromLactobacillus plantarum.J. Food Sci. Nutri. 9: 324–329.

    CAS  Google Scholar 

  17. Ueno, Y., K. Hayakawa, S. Takahashi, and K. Oda (1997) Purification and characterization of glutamate decarboxylase fromLactobacillus brevis IFO 12005.Biosci. Biotechnol. Biochem. 61: 1168–1171.

    CAS  Google Scholar 

  18. Komatsuzaki, N., J. Shima, S. Kawamoto, H. Momose, and T. Kimura (2005) Production of γ-aminobutyric acid (GABA) byLactobacillus paracasei isolated from traditional fermented foods.Food Microbiol. 22: 497–504.

    Article  CAS  Google Scholar 

  19. Kook, M. C., S. C. Jo, J. S. Song, C. I. Choi, J. Y. Jung, Y. S. Park, and Y. R. Byeon (2004) GABA production byLactobacillus sakei B2-16.Int. Symp. Kor. Food Sci. Technol. P. 142.

  20. Wee, Y. J., J. N. Kim, J. S. Yun, and H. W. Ryu (2005) Optimum conditions for the biological production of lactic acid by a newly isolated lactic acid bacterium,Lactobacillus sp. RKY2.Biotechnol. Bioprocess Eng. 10: 23–28.

    Article  CAS  Google Scholar 

  21. Jung, D. Y., S. Jung, J. S. Yun, J. N. Kim, Y. J. Wee, H. G. Jang, and H. W. Ryu (2005) Influences of cultural medium component on the production of poly(γ-glutamic acid) byBacillus sp. RKY3.Biotechnol. Bioprocess Eng. 10: 289–295.

    Article  CAS  Google Scholar 

  22. Chin, H. S., F. Breidt, H. P. Fleming, W. C. Shin, and S. S. Yoon (2006) Identification of predominant bacterial isolates from the fermentingkimchi using ITS-PCR and partial 16S rDNA sequence analyses.J. Microbiol. Biotechnol. 16: 68–76.

    CAS  Google Scholar 

  23. Park, K. B. and S. H. Oh (2007) Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium,Lactobacillus brevis OPK-3.Bioresour. Technol. 98: 312–319.

    Article  CAS  Google Scholar 

  24. Cui, X. S., M. R. Shin, K. A. Lee, and N. H. Kim (2005) Identification of differentially expressed genes in murine embryos at the blastocyst stage using annealing control primer system.Mol. Reprod. Dev. 70: 278–287.

    Article  CAS  Google Scholar 

  25. Shin, E. J., S. L. Park, S. J. Jeon, J. W. Lee, Y. T. Kim, Y. H. Kim, and S. W. Nam (2006) Effect of molecular chaperones on the soluble expression of alginate lyase inE. coli.Biotechnol. Bioprocess Eng. 11: 414–419.

    Article  CAS  Google Scholar 

  26. Okkers, D. J., L. M. T. Dicks, M. Silvester, J. J. Joubert, and H. J. Odendaal (1999) Characterization of pentocin TV35b, a bacteriocin-like peptide isolated fromLactobacillus pentosus with a fungistatic effect onCandida albicans.J. Appl. Microbiol. 87: 726–734.

    Article  CAS  Google Scholar 

  27. Polyakova, Y., Y. M. Koo, and K. H. Row (2006) Application of ionic liquids as mobile phase modifier in HPLC.Biotechnol. Bioprocess Eng. 11: 1–6.

    Article  CAS  Google Scholar 

  28. Small, P. L. C. and S. R. Waterman (1998) Acid stress, anaerobiosis andgadCB: Lessons fromLactococcus lactis andEscherichia coli.Trends Microbiol. 6: 214–216.

    Article  CAS  Google Scholar 

  29. Choi, S. I., J. W. Lee, S. M. Park, M. Y. Lee, G. E. Ji, M. S. Park, and T. R. Heo (2006) Improvement of γ-aminobutyric acid (GABA) production using cell entrapment ofLactobacillus brevis GABA 057.J. Microbiol. Biotechnol. 16: 562–568.

    CAS  Google Scholar 

  30. Yokoyama, S., J. I. Hiramatsu, and K. Hayakawa (2002) Production of γ-aminobutyric acid from alcohol distillery lees byLactobacillus brevis IFO-12005.J. Biosci. Bioeng. 93: 95–97.

    CAS  Google Scholar 

  31. Yoo, E. J., H. S. Lim, K. O. Park, and M. R. Choi (2005) Cytotoxic, antioxidative, and ACE inhibiting activities of Dolsan leaf mustard juice (DLMJ) treated with lactic acid bacteria.Biotechnol. Bioprocess Eng. 10: 60–66.

    Article  CAS  Google Scholar 

  32. Murzin, A. G. (1996) Structural classification of proteins: new superfamilies.Curr. Opin. Struct. Biol. 6: 386–394.

    Article  CAS  Google Scholar 

  33. Burkhard, P., P. Dominici, C. Borri-Voltattorni, J. N. Jansonius, and V. N. Malashkevich (2001) Structural in sight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase.Nat. Struct. Biol. 8: 963–967.

    Article  CAS  Google Scholar 

  34. Momany, C., R. Ghosh, and M. L. Hackert (1995) Structural motifs for pyridoxal-5′-phosphate binding in decarboxylases: An analysis based on the crystal structure of theLactobacillus 30a ornithine decarboxylase.Protein Sci. 4: 849–854.

    Article  CAS  Google Scholar 

  35. Kawalleck, P., H. Keller, K. Hahlbrock, D. Scheel, and I. E. Somssich (1993) A pathogen-responsive gene of parsley encodes tyrosine decarboxylase.J. Biol. Chem. 268: 2189–2194.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jong Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SH., Shin, BH., Kim, YH. et al. Cloning and expression of a full-length glutamate decarboxylase gene fromLactobacillus brevis BH2. Biotechnol. Bioprocess Eng. 12, 707–712 (2007). https://doi.org/10.1007/BF02931089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931089

Keywords

Navigation