Skip to main content

Advertisement

Log in

Alpha-Asarone Ameliorates Neurological Dysfunction of Subarachnoid Hemorrhagic Rats in Both Acute and Recovery Phases via Regulating the CaMKII-Dependent Pathways

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Early brain injury (EBI) is the leading cause of poor prognosis for patients suffering from subarachnoid hemorrhage (SAH), particularly learning and memory deficits in the repair phase. A recent report has involved calcium/calmodulin-dependent protein kinase II (CaMKII) in the pathophysiological process underlying SAH-induced EBI. Alpha-asarone (ASA), a major compound isolated from the Chinese medicinal herb Acorus tatarinowii Schott, was proven to reduce secondary brain injury by decreasing CaMKII over-phosphorylation in rats’ model of intracerebral hemorrhage in our previous report. However, the effect of ASA on SAH remains unclear, and the role of CaMKII in both acute and recovery stages of SAH needs further investigation. In this work, we first established a classic SAH rat model by endovascular perforation and intraperitoneally administrated different ASA doses (10, 20, and 40 mg/kg) 2 h after successful modeling. Then, the short- and long-term neurobehavioral performances were blindly evaluated to confirm ASA’s efficacy against SAH. Subsequently, we explored ASA’s therapeutic mechanism in both acute and recovery stages using histopathological examination, TUNEL staining, flow cytometry, Western-blot, double-immunofluorescence staining, and transmission electron microscopy (TEM) observation. Finally, KN93, a selective CaMKII inhibitor, was applied in oxyhemoglobin-damaged HT22 cells to explore the role of CaMKII in ASA’s neuroprotective effect. The results demonstrated that ASA alleviated short- and long-term neurological dysfunction, reduced mortality and seizure rate within 24 h, and prolonged 14-day survival in SAH rats. Histopathological examination showed a reduction of neuronal damage and a restoration of the hippocampal structure after ASA treatment in both acute and recovery phases of SAH. In the acute stage, the Western-blot and flow cytometer analyses showed that ASA restored E/I balance, reduced calcium overload and CaMKII phosphorylation, and inhibited mitochondrion-involved apoptosis, thus preventing neuronal damage and apoptosis underlying EBI post-SAH. In the recovery stage, the TEM observation, double-immunofluorescence staining, and Western-blot analyses indicated that ASA increased the numbers of synapses and enhanced synaptic plasticity in the ipsilateral hippocampi, probably by promoting NR2B/CaMKII interaction and activating subsequent CREB/BDNF/TrkB signaling pathways. Furthermore, KN93 notably reversed ASA’s neuroprotective effect on oxyhemoglobin-damaged HT22 cells, confirming CaMKII a potential target for ASA’s efficacy against SAH. Our study confirmed for the first time that ASA ameliorated the SAH rats’ neurobehavioral deterioration, possibly via modulating CaMKII-involved pathways. These findings provided a promising candidate for the clinical treatment of SAH and shed light on future drug discovery against SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data from this study are available from the corresponding author on reasonable request.

References

  1. Chen F, Lu J, Chen F, Lin Z, Lin Y, Yu L, Su X, Yao P, Cai B, Kang D. Recombinant neuroglobin ameliorates early brain injury after subarachnoid hemorrhage via inhibiting the activation of mitochondria apoptotic pathway. Neurochem Int. 2018;112:219–26.

    Article  CAS  PubMed  Google Scholar 

  2. Nath S, Koziarz A, Badhiwala JH, Almenawer SA. Predicting outcomes in aneurysmal subarachnoid haemorrhage. BMJ. 2018;360:k102.

    Article  PubMed  Google Scholar 

  3. Etminan N, Chang HS, Hackenberg K, de Rooij NK, Vergouwen MDI, Rinkel GJE, Algra A. Worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis. JAMA Neurol. 2019;76:588–97.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li J, Chen J, Mo H, Chen J, Qian C, Yan F, Gu C, Hu Q, Wang L, Chen G. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury after subarachnoid hemorrhage. Mol Neurobiol. 2016;53:2668–78.

    Article  CAS  PubMed  Google Scholar 

  5. Luo X, Li L, Xu W, Cheng Y, Xie Z. HLY78 attenuates neuronal apoptosis via the LRP6/GSK3β/β-Catenin signaling pathway after subarachnoid hemorrhage in rats. Neurosci Bull. 2020;36:1171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng D, Wang W, Dong Y, Wu L, Huang J, Ma Y, Zhang Z, Wu S, Gao G, Qin H. Ceftriaxone alleviates early brain injury after subarachnoid hemorrhage by increasing excitatory amino acid transporter 2 expression via the PI3K/Akt/NF-κB signaling pathway. Neuroscience. 2014;268:21–32.

    Article  CAS  PubMed  Google Scholar 

  7. Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 2001;69:369–81.

    Article  CAS  PubMed  Google Scholar 

  8. Wu CT, Wen LL, Wong CS, Tsai SY, Chan SM, Yeh CC, Borel CO, Cherng CH. Temporal changes in glutamate, glutamate transporters, basilar arteries wall thickness, and neuronal variability in an experimental rat model of subarachnoid hemorrhage. Anesth Analg. 2011;112:666–73.

    Article  CAS  PubMed  Google Scholar 

  9. Geraghty JR, Lara-Angulo MN, Spegar M, Reeh J, Testai FD. Severe cognitive impairment in aneurysmal subarachnoid hemorrhage: predictors and relationship to functional outcome. J Stroke Cerebrovasc Dis. 2020;29:105027.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10:861–72.

    Article  CAS  PubMed  Google Scholar 

  11. Shibata ACE, Ueda HH, Eto K, Onda M, Sato A, Ohba T, Nabekura J, Murakoshi H. Photoactivatable CaMKII induces synaptic plasticity in single synapses. Nat Commun. 2021;12:751.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Z, Zhao G, Qian S, Yang Z, Chen X, Chen J, Cai C, Liang X, Guo J. Cerebrovascular protection of β-asarone in Alzheimer’s disease rats: a behavioral, cerebral blood flow, biochemical and genic study. J Ethnopharmacol. 2012;144:305–12.

    Article  CAS  PubMed  Google Scholar 

  13. Rajput SB, Tonge MB, Karuppayil SM. An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other Acorus species. Phytomedicine. 2014;21:268–76.

    Article  CAS  PubMed  Google Scholar 

  14. Chellian R, Pandy V, Mohamed Z. Pharmacology and toxicology of α- and β-asarone: a review of preclinical evidence. Phytomedicine. 2017;32:41–58.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Gao X, Liu Q, Zeng L, Zhang K, Mu K, Zhang D, Zou H, Wu N, Ou J, Wang Q, Mao S. Alpha-asarone improves cognitive function of aged rats by alleviating neuronal excitotoxicity via GABA(A) receptors. Neuropharmacology. 2020;162:107843.

    Article  CAS  PubMed  Google Scholar 

  16. Wang ZJ, Levinson SR, Sun L, Heinbockel T. Identification of both GABAA receptors and voltage-activated Na(+) channels as molecular targets of anticonvulsant α-asarone. Front Pharmacol. 2014;5:40.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang K, Liu Q, Luo L, Feng X, Hu Q, Fan X, Mao S. Neuroprotective effect of alpha-asarone on the rats model of cerebral ischemia-reperfusion stroke via ameliorating glial activation and autophagy. Neuroscience. 2021;473:130–41.

    Article  CAS  PubMed  Google Scholar 

  18. Gao X, Li R, Luo L, Zhang D, Liu Q, Zhang J, Mao S. Alpha-asarone ameliorates neurological deterioration of intracerebral hemorrhagic rats by alleviating secondary brain injury via anti-excitotoxicity pathways. Phytomedicine. 2022;105:154363.

    Article  CAS  PubMed  Google Scholar 

  19. Ma WC, Zhang Q, Li H, Larregieu CA, Zhang N, Chu T, Jin H, Mao SJ. Development of intravenous lipid emulsion of α-asarone with significantly improved safety and enhanced efficacy. Int J Pharm. 2013;450:21–30.

    Article  CAS  PubMed  Google Scholar 

  20. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34.

    Article  PubMed  Google Scholar 

  21. Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94.

    Article  CAS  PubMed  Google Scholar 

  22. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, Gospodarev V, Tang J, You C, Zhang JH. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142–51.

    Article  CAS  PubMed  Google Scholar 

  23. Possin KL, Sanchez PE, Anderson-Bergman C, Fernandez R, Kerchner GA, Johnson ET, Davis A, Lo I, Bott NT, Kiely T, Fenesy MC, Miller BL, Kramer JH, Finkbeiner S. Cross-species translation of the Morris maze for Alzheimer’s disease. J Clin Invest. 2016;126:779–83.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li JR, Xu HZ, Nie S, Peng YC, Fan LF, Wang ZJ, Wu C, Yan F, Chen JY, Gu C, Wang C, Chen JS, Wang L, Chen G. Fluoxetine-enhanced autophagy ameliorates early brain injury via inhibition of NLRP3 inflammasome activation following subrachnoid hemorrhage in rats. J Neuroinflammation. 2017;14:186.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xiang H, Zhang Q, Han Y, Yang L, Zhang Y, Liu Q, Zhang Z, Zhang L. Novel brain-targeting 3-n-butylphthalide prodrugs for ischemic stroke treatment. J Control Release. 2021;335:498–514.

    Article  CAS  PubMed  Google Scholar 

  26. Nakao T, Horie T, Baba O, Nishiga M, Nishino T, Izuhara M, Kuwabara Y, Nishi H, Usami S, Nakazeki F, Ide Y, Koyama S, Kimura M, Sowa N, Ohno S, Aoki H, Hasegawa K, Sakamoto K, Minatoya K, Kimura T, Ono K. Genetic ablation of microRNA-33 attenuates inflammation and abdominal aortic aneurysm formation via several anti-inflammatory pathways. Arterioscler Thromb Vasc Biol. 2017;37:2161–70.

    Article  CAS  PubMed  Google Scholar 

  27. Kong LH, Gu XM, Wu F, Jin ZX, Zhou JJ. CaMKII inhibition mitigates ischemia/reperfusion-elicited calpain activation and the damage to membrane skeleton proteins in isolated rat hearts. Biochem Biophys Res Commun. 2017;491:687–92.

    Article  CAS  PubMed  Google Scholar 

  28. J. Lu, L. Wu, X. Wang, J. Zhu, J. Du, B. Shen. Detection of mitochondria membrane potential to study CLIC4 knockdown-induced HN4 cell apoptosis in vitro. J Vis Exp 2018;56317.

  29. Glantz LA, Gilmore JH, Hamer RM, Lieberman JA, Jarskog LF. Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood. Neuroscience. 2007;149:582–91.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y, Takahashi E, Li W, Halt A, Wiltgen B, Ehninger D, Li GD, Hell JW, Kennedy MB, Silva AJ. Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning. J Neurosci. 2007;27:13843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen Y, Huang L, Wang L, Chen L, Ren W, Zhou W. Differential expression of microRNAs contributed to the health efficacy of EGCG in in vitro subarachnoid hemorrhage model. Food Funct. 2017;8:4675–83.

    Article  CAS  PubMed  Google Scholar 

  32. Zong P, Feng J, Yue Z, Li Y, Wu G, Sun B, He Y, Miller B, Yu AS, Su Z, Xie J, Mori Y, Hao B, Yue L. Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron. 2022;110:1944-1958.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuksel S, Tosun YB, Cahill J, Solaroglu I. Early brain injury following aneurysmal subarachnoid hemorrhage: emphasis on cellular apoptosis. Turk Neurosurg. 2012;22:529–33.

    PubMed  Google Scholar 

  34. Sun JY, Zhao SJ, Wang HB, Hou YJ, Mi QJ, Yang MF, Yuan H, Ni QB, Sun BL, Zhang ZY. Ifenprodil improves long-term neurologic deficits through antagonizing glutamate-induced excitotoxicity after experimental subarachnoid hemorrhage. Transl Stroke Res. 2021;12:1067–80.

    Article  CAS  PubMed  Google Scholar 

  35. Clarkson AN, Chebib M. The role of peri-synaptic GABA receptors after stroke. In: Errington AC, Di Giovanni G, Crunelli V, editors. Extrasynaptic GABAA receptors. New York: Springer; 2014. p. 179–205.

    Chapter  Google Scholar 

  36. Zhao YM, Yu SM, Zhou QK. Effect of baicalin on the brain expression of GAT-1 and GABAAR after intracerebral hemorrhage in rats. Chin New Drugs J. 2010;19:970–4.

    CAS  Google Scholar 

  37. Soni N, Reddy BV, Kumar P. GLT-1 transporter: an effective pharmacological target for various neurological disorders. Pharmacol Biochem Behav. 2014;127:70–81.

    Article  CAS  PubMed  Google Scholar 

  38. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–88.

    Article  CAS  PubMed  Google Scholar 

  39. Moriguchi S, Inagaki R, Saito T, Saido TC, Fukunaga K. Propolis promotes memantine-dependent rescue of cognitive deficits in APP-KI mice. Mol Neurobiol. 2022;59:4630–46.

    Article  CAS  PubMed  Google Scholar 

  40. Song Q, Fan C, Wang P, Li Y, Yang M, Yu SY. Hippocampal CA1 βCaMKII mediates neuroinflammatory responses via COX-2/PGE2 signaling pathways in depression. J Neuroinflammation. 2018;15:338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen Q, Lesnefsky EJ. Blockade of electron transport during ischemia preserves bcl-2 and inhibits opening of the mitochondrial permeability transition pore. FEBS Lett. 2011;585:921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13:566–78.

    Article  CAS  PubMed  Google Scholar 

  43. Tait SWG, Green DR. Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol. 2013;5:a008706.

    Article  PubMed  PubMed Central  Google Scholar 

  44. ZakiGhali MG, Srinivasan VM, Wagner K, Rao C, Chen SR, Johnson JN, Kan P. Cognitive sequelae of unruptured and ruptured intracranial aneurysms and their treatment: modalities for neuropsychological assessment. World Neurosurg. 2018;120:537–49.

    Article  Google Scholar 

  45. Luo Z. Synapse formation and remodeling. Sci China Life Sci. 2010;53:315–21.

    Article  ADS  PubMed  Google Scholar 

  46. Yang C, Li T, Xue H, Wang L, Deng L, Xie Y, Bai X, Xin D, Yuan H, Qiu J, Wang Z, Li G. Inhibition of necroptosis rescues SAH-induced synaptic impairments in hippocampus via CREB-BDNF pathway. Front Neurosci. 2018;12:990.

    Article  PubMed  Google Scholar 

  47. Perrone-Capano C, Volpicelli F, Penna E, Chun JT, Crispino M. Presynaptic protein synthesis and brain plasticity: from physiology to neuropathology. Prog Neurobiol. 2021;202:102051.

    Article  CAS  PubMed  Google Scholar 

  48. Valtorta F, Pennuto M, Bonanomi D, Benfenati F. Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis? BioEssays. 2004;26:445–53.

    Article  CAS  PubMed  Google Scholar 

  49. Chen X, Levy JM, Hou A, Winters C, Azzam R, Sousa AA, Leapman RD, Nicoll RA, Reese TS. PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc Natl Acad Sci U S A. 2015;112:E6983-92.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41.

    Article  PubMed  Google Scholar 

  51. Plata A, Lebedeva A, Denisov P, Nosova O, Postnikova TY, Pimashkin A, Brazhe A, Zaitsev AV, Rusakov DA, Semyanov A. Astrocytic atrophy following status epilepticus parallels reduced Ca2+ activity and impaired synaptic plasticity in the rat hippocampus. Front Mol Neurosci. 2018;11:215.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Incontro S, Díaz-Alonso J, Iafrati J, Vieira M, Asensio CS, Sohal VS, Roche KW, Bender KJ, Nicoll RA. The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms. Nat Commun. 2018;9:2069.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Xie W, Meng X, Zhai Y, Ye T, Zhou P, Nan F, Sun G, Sun X. Antidepressant-like effects of the Guanxin Danshen formula via mediation of the CaMK II-CREB-BDNF signalling pathway in chronic unpredictable mild stress-induced depressive rats. Ann Transl Med. 2019;7:564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leal G, Comprido D, Duarte CB. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology. 2014;76 Pt C:639–56.

    Article  PubMed  Google Scholar 

  55. Wong MH, Samal AB, Lee M, Vlach J, Novikov N, Niedziela-Majka A, Feng JY, Koltun DO, Brendza KM, Kwon HJ, Schultz BE, Sakowicz R, Saad JS, Papalia GA. The KN-93 molecule inhibits calcium/calmodulin-dependent protein kinase II (CaMKII) activity by binding to Ca(2+)/CaM. J Mol Biol. 2019;431:1440–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xiaofeng Gao and Shengjun Mao designed the study. Xiaofeng Gao and Rui Li performed the in vivo and in vitro pharmacological experiments in SAH rats. Lijun Luo, Can Liao, and Huiyuan Yang carried out the data acquisition, analysis, and interpretation. The manuscript was drafted by Xiaofeng Gao and revised by Shengjun Mao. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shengjun Mao.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Li, R., Luo, L. et al. Alpha-Asarone Ameliorates Neurological Dysfunction of Subarachnoid Hemorrhagic Rats in Both Acute and Recovery Phases via Regulating the CaMKII-Dependent Pathways. Transl. Stroke Res. 15, 476–494 (2024). https://doi.org/10.1007/s12975-023-01139-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-023-01139-3

Keywords

Navigation