Skip to main content

Advertisement

Log in

Propolis Promotes Memantine-Dependent Rescue of Cognitive Deficits in APP-KI Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Propolis is a complex resinous substance that is relevant as a therapeutic target for Alzheimer’s disease (AD) and other neurodegenerative diseases. In this study, we confirmed that propolis (Brazilian green propolis) further enhances the rescue of cognitive deficits by the novel AD drug memantine in APP-KI mice. In memory-related behavior tasks, administration of a single dose of propolis at 1–100 mg/kg p.o. significantly enhanced the rescue of cognitive deficits by memantine at 1 mg/kg p.o. in APP-KI mice. In in vitro studies, propolis significantly increased intracellular Ca2+ concentration and calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation in Kir6.2-overexpressed N2A cells treated with memantine. Propolis also significantly increased adenosine 5′-triphosphate (ATP) contents and CaMKII autophosphorylation, which was impaired in Aβ-treated Kir6.2-overexpressed N2A cells. Similarly, repeated administration of propolis at 100 mg/kg p.o. for 8 weeks further enhanced the rescue of cognitive deficits by memantine in APP-KI mice. Consistent with the rescued cognitive deficits in APP-KI mice, repeated administration of propolis markedly ameliorated memantine-dependent rescue of injured long-term potentiation (LTP) in APP-KI mice, concomitant with increased CaMKII autophosphorylation and calcium/calmodulin-dependent protein kinase IV (CaMKIV) phosphorylation in the hippocampal CA1 region. Furthermore, repeated administration of both memantine and propolis significantly restored the decreased ATP contents in the CA1 region of APP-KI mice. Finally, we confirmed that repeated administration of memantine at 1 mg/kg p.o. and propolis at 100 mg/kg p.o. for 8 weeks failed to restore the cognitive deficits in Kir6.2−/− mice. Our study demonstrates that propolis increases ATP contents and promotes the amelioration of cognitive deficits rescued by memantine via Kir6.2 channel inhibition in the CA1 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All source data supporting the findings of this manuscript are available from the corresponding authors upon request.

Abbreviations

Aβ:

Amyloid-β

AD:

Alzheimer’s disease

ATP:

Adenosine 5′-triphosphate

BDNF:

Brain-derived neurotrophic factor

CaMKII:

Calcium/calmodulin-dependent protein kinase II

CaMKIV:

Calcium/calmodulin-dependent protein kinase IV

CREB:

CAMP-responsive element binding protein

DMEM:

Dulbecco’s Modified Eagle’s Medium

fEPSPs:

Field excitatory postsynaptic potentials

HFS:

High-frequency stimulation

KATP :

ATP-sensitive potassium

Kir6.2 − / − mice:

Kir6.2 homozygous mice

LTP:

Long-term potentiation

MCU:

Mitochondrial calcium uniporter complex

N2A:

Neuro2A

NMDAR:

N-methyl-D-aspartate receptor

NOR:

Novel object recognition

ROS:

Reactive oxygen species

SUR:

Sulfonylurea receptor

WT:

Wild type

References

  1. Ashfield R, Gribble FM, Ashcroft SJ et al (1999) Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes 48:1341–1347

    Article  CAS  PubMed  Google Scholar 

  2. Babenko AP, Aguilar-Bryan L, Bryan J (1998) A view of sur/KIR6.X, KATP channels. Annu Rev Physiol 60:667–687

    Article  CAS  PubMed  Google Scholar 

  3. Balion Z, Ramanauskiene K, Jekabsone A et al (2020) The role of mitochondria in brain cell protection from ischemia by differently prepared propolis extracts. Antioxidants 9:1262

    Article  CAS  PubMed Central  Google Scholar 

  4. Baughman JM, Perocchi F, Girgis HS et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baumgartner HK, Gerasimenko JV, Thorne C et al (2009) Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284:20796–20803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brookes P, Darley-Usmar VM (2002) Hypothesis: the mitochondrial NO signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med 32:370–374

    Article  CAS  PubMed  Google Scholar 

  7. Can Z, Yildiz O, Sahin H et al (2015) An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem 180:133–141

    Article  CAS  PubMed  Google Scholar 

  8. Chan GC, Cheung KW, Sze DM (2013) The immunomodulatory and anti-cancer properties of propolis. Clin Rev Allergy Immunol 44:262–273

    Article  CAS  PubMed  Google Scholar 

  9. Chen HS, Pellegrini JW, Aggarwal SK et al (1992) Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 12:4427–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen HS, Lipton SA (2006) The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 97:1611–1626

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Long Y, Han M et al (2008) Water-soluble derivative of propolis mitigates scopolamine-induced learning and memory impairment in mice. Pharmacol Biochem Behav 90:441–446

    Article  CAS  PubMed  Google Scholar 

  12. De Stefani D, Raffaello A, Teardo E et al (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochem Biophys Acta Bioenerg 1787:1309–1316

    Article  CAS  Google Scholar 

  14. Derkach V, Barria A, Soderling TR (1999) Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Pro Natl Acad Sci USA 96:3269–3274

    Article  CAS  Google Scholar 

  15. Devi L, Ohno M (2016) Cognitive benefits of memantine in Alzheimer’s 5XFAD model mice decline during advanced disease stages. Pharmacol Biochem Behav 144:60–66

    Article  CAS  PubMed  Google Scholar 

  16. Ding J, Matsumiya T, Hayakari R et al (2021) Daily Brazilian green propolis intake elevates blood artepillin C levels in humans. J Sci Food Agric 101:4855–4861

    Article  CAS  PubMed  Google Scholar 

  17. Fukunaga K, Stoppini L, Miyamoto E et al (1993) Long-term potentiation is associated with a increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 268:7863–7867

    Article  CAS  PubMed  Google Scholar 

  18. Fukunaga K, Muller D, Miyamoto E (1995) Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J Biol Chem 270:6119–6124

    Article  CAS  PubMed  Google Scholar 

  19. Gass P, Wolfer DP, Balschun D et al (1998) Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learn Mem 5:274–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guimarães-Ferreira L, Pinheiro CHJ, Gerlinger-Romero F et al (2012) Short-term creatine supplementation decreases reactive oxygen species content with no changes in expression and activity of antioxidant enzymes in skeletal muscle. Eur J Appl Physiol 112:3905–3911

    Article  PubMed  CAS  Google Scholar 

  21. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    Article  CAS  PubMed  Google Scholar 

  22. Ilhan A, Iraz M, Gurel A et al (2004) Caffeic acid phenethyl ester exerts a neuroprotective effect on CNS against pentylenetetrazol-induced seizures in mice. Neurochem Res 29:2287–2292

    Article  CAS  PubMed  Google Scholar 

  23. Inoue M, Nishikawa M, Sato EF et al (1999) Cross-talk of NO, superoxide and molecular oxygen, a majesty of aerobic life. Free Radic Res 31:251–260

    Article  CAS  PubMed  Google Scholar 

  24. Jensen KF, Ohmstede CA, Fisher RS et al (1991) Nuclear and axonal localization of Ca2+/calmodulin-dependent protein kinase type Gr in rat cerebellar cortex. Proc Natl Acad Sci USA 88:2850–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang H, Sun LD, Atkins CM et al (2001) An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell 106:771–783

    Article  CAS  PubMed  Google Scholar 

  26. Kano Y, Horie N, Doi S et al (2008) Artepillin C derived from propolis induces neurite outgrowth in PC12m3 cells via ERK and p38 MAPK pathways. Neurochem Res 33:1795–1803

    Article  CAS  PubMed  Google Scholar 

  27. Kasahara J, Fukunaga K, Miyamoto E (2001) Activation of calcium/calmodulin-dependent protein kinase IV in long term potentiation in the rat hippocampal CA1 region. J Biol Chem 276:24044–24050

    Article  CAS  PubMed  Google Scholar 

  28. Konishi Y, Hitomi Y, Yoshida M et al (2005) Absorption and bioavailability of artepillin C in rats after oral administration. J Agric Food Chem 53:9928–9933

    Article  CAS  PubMed  Google Scholar 

  29. Korte M, Kang H, Bonhoeffer T et al (1998) A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology 37:553–559

    Article  CAS  PubMed  Google Scholar 

  30. Kuropatnicki AK, Szliszka E, Krol W (2013) Historical aspects of propolis research in modern times. J Evid Based Complementary Altern Med 2013:964149

    Google Scholar 

  31. Lei Y, Chen J, Zhang W et al (2012) In vivo investigation of the potential of galangin, kaempferol and myricetin for the protection of D-galactose-induced cognitive impairment. Food Chem 135:2702–2707

    Article  CAS  PubMed  Google Scholar 

  32. Lipton SA (2004) Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimer’s Dis 6:S61–S74

    Article  CAS  Google Scholar 

  33. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioral memory. Nat Rev Neurosci 3:175–190

    Article  CAS  PubMed  Google Scholar 

  34. Liu R, Wu CX, Zhou D et al (2012) Pinocembrin protects against β-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Med 10:1–21

    Article  CAS  Google Scholar 

  35. Miki T, Nagashima K, Tashiro F et al (1998) Defective insulin secretion and enhanced insulin action in KATP channel deficient mice. Proc Natl Acad Sci USA 95:10402–10406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miki T, Suzuki M, Shibasaki T et al (2002) Mouse model of prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med 8:466–472

    Article  CAS  PubMed  Google Scholar 

  37. Miyano O, Kameshita I, Fujisawa H (1992) Purification and characterization of a brain-specific multifunctional calmodulin-dependent protein kinase from rat cerebellum. J Biol Chem 267:1198–1203

    Article  CAS  PubMed  Google Scholar 

  38. Montkowski A, Holsboer F (1997) Intact spatial learning and memory in transgenic mice with reduced BDNF. NeuroReport 8:779–782

    Article  CAS  PubMed  Google Scholar 

  39. Moriguchi S, Han F, Nakagawasai O et al (2006) Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J Neurochem 97:22–29

    Article  CAS  PubMed  Google Scholar 

  40. Moriguchi S, Yamamoto Y, Ikuno T et al (2011) Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice. J Neurochem 117:879–891

    Article  CAS  PubMed  Google Scholar 

  41. Moriguchi S, Ishizuka T, Yabuki Y, Shioda N, Sasaki Y, Tagashira H, Yawo H, Yeh JZ, Sakagami H, Narahashi T, Fukunaga K (2018) Blockade of the KATP channel Kir6.2 by memantine represents a novel mechanism relevant to Alzheimer’s disease therapy. Mol Psychiatry 23:211–221

    Article  CAS  PubMed  Google Scholar 

  42. Moriguchi S, Inagaki R, Shimojo H et al (2020) Memantine improves depressive-like behaviors via Kir6.1 channel inhibition in olfactory bulbectomized mice. Neuroscience 442:264–273

    Article  CAS  PubMed  Google Scholar 

  43. Moriguchi S, Inagaki R, Fukunaga K (2021) Memantine improves cognitive deficits via KATP channel inhibition in olfactory bulbectomized mice. Mol Cell Neurosci 117:103680

  44. Murtaza G, Karim S, Akram MR et al (2014) Caffeic acid phenethyl ester and therapeutic potentials. Biomed Res Int 2014:145342

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nanaware S, Shelar M, Sinnathambi A et al (2017) Neuroprotective effect of Indian propolis in β-amyloid induced memory deficit: impact on behavioral and biochemical parameters in rats. Biomed Pharmacother 93:543–553

    Article  CAS  PubMed  Google Scholar 

  46. Ni J, Wu Z, Meng J et al (2020) The neuroprotective effects of Brazilian green propolis on neurodegenerative damage in human neuronal SH-SY5Y cells. Oxid Med Cell Longev 2017:7984327

    Google Scholar 

  47. Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic, San Diego

    Google Scholar 

  48. Prickaerts J, Van Staveren WCG, Sik A et al (2002) Effects of two selective phosphodiesterase type5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience 113:349–359

    Article  Google Scholar 

  49. Purohit A, Joshi K, Kotru B et al (2012) Histrogical study of antiatherosclerotic effect of propolis in induced hypercholestrolemic male albino rabbits. J Fundamen Appl Life Sci 2:384–390

    Google Scholar 

  50. Quan MN, Zhang N, Wang YY et al (2011) Possible antidepressant effects and mechanisms of memantine in behaviors and synaptic plasticity of a depression rat model. Neuroscience 182:88–97

    Article  CAS  PubMed  Google Scholar 

  51. Reus GZ, Stringari RB, Kirsch TR et al (2010) Neurochemical and behavioral effects of acute and chronic memantine administration in rats: further support for NMDA as a new pharmacological target for the treatment of depression? Brain Res Bull 81:585–589

    Article  CAS  PubMed  Google Scholar 

  52. Rogoz Z, Skuza G, Maj J et al (2002) Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology 42:1024–1030

    Article  CAS  PubMed  Google Scholar 

  53. Saito T, Matsuba Y, Mihira N et al (2014) Single APP knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17:661–664

    Article  CAS  PubMed  Google Scholar 

  54. Shimazawa M, Chikamatsu S, Morimoto N et al (2005) Neuroprotection by Brazilian green propolis against in vitro and in vivo ischemic neuronal damage. eCAM 2:201–207

    PubMed  PubMed Central  Google Scholar 

  55. Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23:75–80

    Article  CAS  PubMed  Google Scholar 

  56. Stine WB, Dahlgren KN, Krafft GA et al (2003) In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622

    Article  CAS  PubMed  Google Scholar 

  57. Sun W, Hu K (2010) Role for SUR2A in coupling cardiac K(ATP) channels to caveolin-3. Cell Physiol Biochem 25:409–418

    Article  CAS  PubMed  Google Scholar 

  58. Tokita K, Fujita Y, Yamaji T et al (2012) Depressive-like behavior in adrenocorticotropic hormone-treated rats blocked by memantine. Pharmacol Biochem Behav 102:329–334

    Article  CAS  PubMed  Google Scholar 

  59. Thomzig A, Laube G, Prüss H et al (2005) Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol 484:313–330

    Article  CAS  PubMed  Google Scholar 

  60. Wu GY, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 98:2808–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xia Z, Storm DR (2005) The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 6:267–276

    Article  CAS  PubMed  Google Scholar 

  62. Yamagata Y (2003) New aspects of neurotransmitter release and exocytosis: dynamic and differential regulation of synapsin I phosphorylation by acute neuronal excitation in vivo. J Pharmacol Sci 93:22–29

    Article  CAS  PubMed  Google Scholar 

  63. Zawar C, Plant TD, Schirra C et al (1999) Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol 514:327–341

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Susumu Seino for providing the Kir6.2−/− mice used in this study.

Funding

This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology, and the Ministry of Health and Welfare of Japan (18K06887 to S.M.), and in part by a grant from the Project of Translational and Clinical Research Core Centers from AMED of Japan (21wm0525031h0001 to S.M.). This research was supported in part by Yamada Research Grant.

Author information

Authors and Affiliations

Authors

Contributions

SM and RI performed the experiments. TS and TCS provided the APP-KI mice. KF provided helpful advice. SM designed the study and wrote the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Shigeki Moriguchi.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

TS and TCS serve as the advisor and CEO, respectively, of RIKEN BIO Co. Ltd., which sublicenses animal models, APP knock-in mice, and for-profit organizations; the profits from these enterprises are used for the identification of disease biomarkers. Other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriguchi, S., Inagaki, R., Saito, T. et al. Propolis Promotes Memantine-Dependent Rescue of Cognitive Deficits in APP-KI Mice. Mol Neurobiol 59, 4630–4646 (2022). https://doi.org/10.1007/s12035-022-02876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02876-6

Keywords

Navigation