Skip to main content

Advertisement

Log in

NL-1 Promotes PINK1-Parkin-Mediated Mitophagy Through MitoNEET Inhibition in Subarachnoid Hemorrhage

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

A Correction to this article was published on 29 December 2023

This article has been updated

Abstract

NL-1 is a mitoNEET ligand known for its antileukemic effects and has recently shown neuroprotective effects in an ischemic stroke model. However, its underlying process in subarachnoid hemorrhage (SAH) is still unclear. Thus, we aimed to investigate the possible mechanism of NL-1 after SAH in rats. 112 male adult Sprague–Dawley rats were used for experiments. SAH model was performed with endovascular perforation. Rats were dosed intraperitoneally (i.p.) with NL-1 (3 mg/kg, 10 mg/kg, 30 mg/kg) or a vehicle (10% DMSO aqueous solution) at 1 h after SAH. A novel mitophagy inhibitor liensinine (60 mg/kg) was injected i.p. 24 h before SAH. SAH grades, short-term and long-term neurological scores were measured for neurobehavior. TdTmediated dUTP nick end labeling (TUNEL) staining, dihydroethidium (DHE) staining and western blot measurements were used to detect the outcomes and mechanisms of NL-1 administration. NL-1 treatment significantly improved short-term neurological behavior in Modified Garcia and beam balance sores in comparison with SAH + vehicle group. NL-1 administration also increased mitoNEET which induced phosphatase and tensin-induced kinase 1 (PINK1), Parkin and LC3II related mitophagy compared with SAH + vehicle group. In addition, the expressions of apoptotic protein Cleaved Caspase-3 and oxidative stress related protein Romo1 in NL-1 treatment group were reversed from SAH + vehicle group. Meanwhile, NL-1 treatment notably reduced TUNEL-positive cells, DHE-positive cells compared with SAH + vehicle group. NL-1 treatment notably improved long-term neurological behavior in rotarod and water maze tests compared to SAH + vehicle group. However, the administration of liensinine may inhibit the treatment effect of NL-1, leading to reduced expression of mitophagy markers Pink1, Parkin, LC3I/II, and increased expressions of Romo1 and Cleaved Caspase-3. NL-1 induced PINK1/PARKIN related mitophagy via mitoNEET, which reduced oxidative stress and apoptosis in early brain injury after SAH in rats. NL-1 may serve as a prospective drug for the treatment of SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data are fully available without restriction. All relevant data are within the paper.

Change history

References

  1. Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet 389(10069):655–666

    Article  PubMed  Google Scholar 

  2. Yang Y, Chen S, Zhang JM (2017) The updated role of oxidative stress in subarachnoid hemorrhage. Curr Drug Deliv 14(6):832–842

    Article  CAS  PubMed  Google Scholar 

  3. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang T, Wu P, Budbazar E et al (2019) Mitophagy reduces oxidative stress via Keap1 (Kelch-like epichlorohydrin-associated protein 1)/Nrf2 (nuclear factor-E2-related factor 2)/PHB2 (prohibitin 2) pathway after subarachnoid hemorrhage in rats. Stroke 50(4):978–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao S, Shrestha S, Li J et al (2017) Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep 7(1):2417

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shirihai OS, Song M, Dorn GW 2nd (2015) How mitochondrial dynamism orchestrates mitophagy. Circ Res 116(11):1835–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lazarou M, Sliter DA, Kane LA et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colca JR, McDonald WG, Waldon DJ et al (2004) Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol Endocrinol Metab 286(2):E252–E260

    Article  CAS  PubMed  Google Scholar 

  9. Harrigan GG, Colca J, Szalma S et al (2006) PNU-91325 increases fatty acid synthesis from glucose and mitochondrial long chain fatty acid degradation: a comparative tracer-based metabolomics study with rosiglitazone and pioglitazone in HepG2 cells. Metabolomics 2(1):21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feinstein DL, Spagnolo A, Akar C et al (2005) Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem Pharmacol 70(2):177–188

    Article  CAS  PubMed  Google Scholar 

  11. Geldenhuys WJ, Funk MO, Awale PS et al (2011) A novel binding assay identifies high affinity ligands to the rosiglitazone binding site of mitoNEET. Bioorg Med Chem Lett 21(18):5498–5501

    Article  CAS  PubMed  Google Scholar 

  12. Geldenhuys WJ, Funk MO, Barnes KF et al (2010) Structure-based design of a thiazolidinedione which targets the mitochondrial protein mitoNEET. Bioorg Med Chem Lett 20(3):819–823

    Article  CAS  PubMed  Google Scholar 

  13. Vernay A, Marchetti A, Sabra A et al (2017) MitoNEET-dependent formation of intermitochondrial junctions. Proc Natl Acad Sci USA 114(31):8277–8282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sohn YS, Tamir S, Song L et al (2013) NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proc Natl Acad Sci USA 110(36):14676–14681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salem AF, Whitaker-Menezes D, Howell A et al (2012) Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Cell Cycle 11(22):4174–4180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tamir S, Paddock ML, Darash-Yahana-Baram M et al (2015) Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease. Biochim Biophys Acta 1853(6):1294–1315

    Article  CAS  PubMed  Google Scholar 

  17. Yamano K, Matsuda N, Tanaka K (2016) The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 17(3):300–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lazarou M, Narendra DP, Jin SM et al (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol 200(2):163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seabright AP, Fine NHF, Barlow JP et al (2020) AMPK activation induces mitophagy and promotes mitochondrial fission while activating TBK1 in a PINK1-Parkin independent manner. FASEB J 34(5):6284–6301

    Article  CAS  PubMed  Google Scholar 

  20. Yonutas HM, Hubbard WB, Pandya JD et al (2020) Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: new mechanism of pioglitazone following traumatic brain injury. Exp Neurol 327:113243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galkin A (2019) Brain ischemia/reperfusion injury and mitochondrial complex I damage. Biochem Mosc 84(11):1411–1423

    Article  CAS  Google Scholar 

  22. Ten V, Galkin A (2019) Mechanism of mitochondrial complex I damage in brain ischemia/reperfusion injury. A hypothesis. Mol Cell Neurosci 100:103408

    Article  CAS  PubMed  Google Scholar 

  23. Andrabi SS, Ali M, Tabassum H et al (2019) Pramipexole prevents ischemic cell death via mitochondrial pathways in ischemic stroke. Dis Model Mech. https://doi.org/10.1242/dmm.033860

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sugawara T, Ayer R, Jadhav V et al (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167(2):327–334

    Article  PubMed  Google Scholar 

  25. Peng J, Pang J, Huang L et al (2019) LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biol 21:101121

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang T, Xu S, Wu P et al (2019) Mitoquinone attenuates blood-brain barrier disruption through Nrf2/PHB2/OPA1 pathway after subarachnoid hemorrhage in rats. Exp Neurol 317:1–9

    Article  CAS  PubMed  Google Scholar 

  27. Vijikumar A, Saralkar P, Saylor SD et al (2022) Novel mitoNEET ligand NL-1 improves therapeutic outcomes in an aged rat model of cerebral ischemia/reperfusion injury. Exp Neurol 355:114128

    Article  CAS  PubMed  Google Scholar 

  28. Zhou J, Li G, Zheng Y et al (2015) A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy 11(8):1259–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bromley-Brits K, Deng Y, Song W (2011) Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp. https://doi.org/10.3791/2920

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kusminski CM, Holland WL, Sun K et al (2012) MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat Med 18(10):1539–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rabchevsky AG, Patel SP, Sullivan PG (2017) Targeting mitoNEET with pioglitazone for therapeutic neuroprotection after spinal cord injury. Neural Regen Res 12(11):1807–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi G, Cui L, Chen R et al (2020) TT01001 attenuates oxidative stress and neuronal apoptosis by preventing mitoNEET-mediated mitochondrial dysfunction after subarachnoid hemorrhage in rats. NeuroReport 31(11):845–850

    Article  CAS  PubMed  Google Scholar 

  33. Geldenhuys WJ, Benkovic SA, Lin L et al (2017) MitoNEET (CISD1) knockout mice show signs of striatal mitochondrial dysfunction and a Parkinson’s disease phenotype. ACS Chem Neurosci 8(12):2759–2765

    Article  CAS  PubMed  Google Scholar 

  34. Saralkar P, Arsiwala T, Geldenhuys WJ (2020) Nanoparticle formulation and in vitro efficacy testing of the mitoNEET ligand NL-1 for drug delivery in a brain endothelial model of ischemic reperfusion-injury. Int J Pharm 578:119090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Geldenhuys WJ, Nair RR, Piktel D et al (2019) The MitoNEET ligand NL-1 mediates antileukemic activity in drug-resistant B-cell acute lymphoblastic leukemia. J Pharmacol Exp Ther 370(1):25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee S, Lee S, Lee SJ et al (2022) Inhibition of mitoNEET induces Pink1-Parkin-mediated mitophagy. BMB Rep 55(7):354–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han Y, Zhang T, Su J et al (2017) Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J Clin Neurosci 40:157–162

    Article  CAS  PubMed  Google Scholar 

  38. Shen L, Gan Q, Yang Y et al (2021) Mitophagy in cerebral ischemia and ischemia/reperfusion injury. Front Aging Neurosci 13:687246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim CW, Choi KC (2021) Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci 277:119607

    Article  CAS  PubMed  Google Scholar 

  40. Marin R, Chiarello DI, Abad C et al (2020) Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 1866(12):165961

    Article  CAS  PubMed  Google Scholar 

  41. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8(1):3–5

    Article  CAS  PubMed  Google Scholar 

  42. Jurgensmeier JM, Xie Z, Deveraux Q et al (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95(9):4997–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lucke-Wold B, Dodd W, Motwani K et al (2022) Investigation and modulation of interleukin-6 following subarachnoid hemorrhage: targeting inflammatory activation for cerebral vasospasm. J Neuroinflammation 19(1):228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lucke-Wold B, Hosaka K, Dodd W et al (2021) Interleukin-6: important mediator of vasospasm following subarachnoid hemorrhage. Curr Neurovasc Res 18(3):364–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors disclosed receipt of the following financial support for the research and authorship of this article: this research was supported by the National Natural Science Foundation of China to Dr. TY Zhang [Grant No. 82001324].

Author information

Authors and Affiliations

Authors

Contributions

TZ performed the studies and wrote the manuscript. MZ contributed to the design and review. All authors analyzed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Minghai Zhang.

Ethics declarations

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Ethical Approval

Ethical approval all procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11064_2023_4024_MOESM1_ESM.tif

Supplemental Fig. 1 Immunofluorescence results of NL-1 reatment increased functional autophagy of mitochondria after SAH. (A) Representative images of mitochondria marker (Mitotracker) with lysosomal marker (Lysotracker) staining from all groups. (B) Quantitative analysis of mitophagy positive cells (percentage of Mitotracker-positive merged Lysotracker-positive cells) from all groups. n = 3 for each group. Scale bars = 100 µm. Bars represent the mean ± SD. # P < 0.05 vs. Sham + vehicle group; * P < 0.05 vs. SAH + vehicle group. (TIF 3703 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, M. NL-1 Promotes PINK1-Parkin-Mediated Mitophagy Through MitoNEET Inhibition in Subarachnoid Hemorrhage. Neurochem Res 49, 1506–1516 (2024). https://doi.org/10.1007/s11064-023-04024-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04024-5

Keywords

Navigation