Skip to main content

Advertisement

Log in

Activation of RKIP Binding ASC Attenuates Neuronal Pyroptosis and Brain Injury via Caspase-1/GSDMD Signaling Pathway After Intracerebral Hemorrhage in Mice

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Pyroptosis has been proven to be responsible for secondary brain injury after intracerebral hemorrhage (ICH). A recent study reported that Raf kinase inhibitor protein (RKIP) inhibited assembly and activation of inflammasome in macrophages. Our present study aimed to investigate the effects of RKIP on inflammasome-mediated neuronal pyroptosis and underlying neuroprotective mechanisms in experimental ICH. Here, we showed that RKIP expression was decreased both in cerebrospinal fluid (CSF) samples from patients with ICH and in the peri-hematoma tissues after experimental ICH. In mouse ICH model, activation of RKIP remarkably improved neurological deficits, reduced brain water content and BBB disruption, and promoted hematoma absorption at 24 h after ICH, as well as alleviated neuronal degeneration, reduced membrane pore formation, and downregulated pyroptotic molecules NLRP3, caspase-1 P20, GSDMD-N, and mature IL-1β. Besides, RKIP activation decreased the number of caspase-1 P20-positive neurons after ICH. However, RKIP inhibitor reserved the neuroprotective effects of RKIP at 24 h following ICH. Moreover, RKIP could bind with ASC, then interrupt the assembly of NLRP3 inflammasome. Mechanistically, inhibiting the caspase-1 by VX-765 attenuated brain injury and suppressed neuronal pyroptosis after RKIP inhibitor-pretreated ICH. In conclusion, our findings indicated that activation of RKIP could attenuate neuronal pyroptosis and brain injury after ICH, to some extent, through ASC/Caspase-1/GSDMD pathway. Thus, RKIP may be a potential target to attenuate brain injury via its anti-pyroptosis effect after ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used in the present study are available from the corresponding author on reasonable request.

References

  1. Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: current approaches to acute management. Lancet. 2018;392:1257–68. https://doi.org/10.1016/S0140-6736(18)31878-6.

    Article  PubMed  Google Scholar 

  2. Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, Lenahan C, Zhang JH, Shao A, Zhang J. Programmed cell deaths and potential crosstalk with blood-brain barrier dysfunction after hemorrhagic stroke. Front Cell Neurosci. 2020;14:68. https://doi.org/10.3389/fncel.2020.00068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7:99–109. https://doi.org/10.1038/nrmicro2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bobinger T, Burkardt P. H BH, Manaenko A: Programmed cell death after intracerebral hemorrhage. Curr Neuropharmacol. 2018;16:1267–81. https://doi.org/10.2174/1570159X15666170602112851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen S, Zuo Y, Huang L, Sherchan P, Zhang J, Yu Z, Peng J, Zhang J, Zhao L, Doycheva D, et al. The MC4 receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br J Pharmacol. 2019;176:1341–56. https://doi.org/10.1111/bph.14639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Mulla F, Bitar MS, Taqi Z, Yeung KC. RKIP: much more than Raf kinase inhibitory protein. J Cell Physiol. 2013;228:1688–702. https://doi.org/10.1002/jcp.24335.

    Article  CAS  PubMed  Google Scholar 

  7. Keller ET, Fu Z, Brennan M. The role of Raf kinase inhibitor protein (RKIP) in health and disease. Biochem Pharmacol. 2004;68:1049–53. https://doi.org/10.1016/j.bcp.2004.04.024.

    Article  CAS  PubMed  Google Scholar 

  8. Bernier I, Jolles P. Purification and characterization of a basic 23 kDa cytosolic protein from bovine brain. Biochim Biophys Acta. 1984;790:174–81. https://doi.org/10.1016/0167-4838(84)90221-8.

    Article  CAS  PubMed  Google Scholar 

  9. Rajkumar K, Nichita A, Anoor PK, Raju S, Singh SS, Burgula S. Understanding perspectives of signalling mechanisms regulating PEBP1 function. Cell Biochem Funct. 2016;34:394–403. https://doi.org/10.1002/cbf.3198.

    Article  CAS  PubMed  Google Scholar 

  10. Granovsky AE, Rosner MR. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor. Cell Res. 2008;18:452–7. https://doi.org/10.1038/cr.2008.43.

    Article  CAS  PubMed  Google Scholar 

  11. Ling HH, Mendoza-Viveros L, Mehta N, Cheng HY. Raf kinase inhibitory protein (RKIP): functional pleiotropy in the mammalian brain. Crit Rev Oncog. 2014;19:505–16. https://doi.org/10.1615/critrevoncog.2014011899.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zaravinos A, Bonavida B, Chatzaki E, Baritaki S: RKIP: a key regulator in tumor metastasis initiation and resistance to apoptosis: therapeutic targeting and impact. Cancers (Basel) 2018, 10. https://doi.org/10.3390/cancers10090287

  13. Gabriela-Freitas M, Pinheiro J, Raquel-Cunha A, Cardoso-Carneiro D, Martinho O: RKIP as an inflammatory and immune system modulator: implications in cancer. Biomolecules 2019, 9. https://doi.org/10.3390/biom9120769

  14. Penas C, Apraiz A, Munoa I, Arroyo-Berdugo Y, Rasero J, Ezkurra PA, Velasco V, Subiran N, Bosserhoff AK, Alonso S, et al: RKIP regulates differentiation-related features in melanocytic cells. Cancers (Basel) 2020, 12. https://doi.org/10.3390/cancers12061451

  15. Zuo H, Liu X, Wang D, Li Y, Xu X, Peng R, Song T. RKIP-mediated NF-kappaB signaling is involved in ELF-MF-mediated improvement in AD rat. Int J Med Sci. 2018;15:1658–66. https://doi.org/10.7150/ijms.28411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maki M, Matsukawa N, Yuasa H, Otsuka Y, Yamamoto T, Akatsu H, Okamoto T, Ueda R, Ojika K. Decreased expression of hippocampal cholinergic neurostimulating peptide precursor protein mRNA in the hippocampus in Alzheimer disease. J Neuropathol Exp Neurol. 2002;61:176–85. https://doi.org/10.1093/jnen/61.2.176.

    Article  CAS  PubMed  Google Scholar 

  17. Su L, Zhao H, Zhang X, Lou Z, Dong X. UHPLC-Q-TOF-MS based serum metabonomics revealed the metabolic perturbations of ischemic stroke and the protective effect of RKIP in rat models. Mol Biosyst. 2016;12:1831–41. https://doi.org/10.1039/c6mb00137h.

    Article  CAS  PubMed  Google Scholar 

  18. Su L, Zhang R, Chen Y, Zhu Z, Ma C. Raf kinase inhibitor protein attenuates ischemic-induced microglia cell apoptosis and activation through NF-kappaB pathway. Cell Physiol Biochem. 2017;41:1125–34. https://doi.org/10.1159/000464119.

    Article  CAS  PubMed  Google Scholar 

  19. Qin Q, Liu H, Shou J, Jiang Y, Yu H, Wang X. The inhibitor effect of RKIP on inflammasome activation and inflammasome-dependent diseases. Cell Mol Immunol. 2021;18:992–1004. https://doi.org/10.1038/s41423-020-00525-3.

    Article  CAS  PubMed  Google Scholar 

  20. Liu YG, Chen JK, Zhang ZT, Ma XJ, Chen YC, Du XM, Liu H, Zong Y, Lu GC. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death Dis. 2017;8: e2579. https://doi.org/10.1038/cddis.2016.460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol. 2014;75:209–19. https://doi.org/10.1002/ana.24070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan B, Shen H, Lin L, Su T, Zhong S, Yang Z. Recombinant adenovirus encoding NLRP3 RNAi attenuate inflammation and brain injury after intracerebral hemorrhage. J Neuroimmunol. 2015;287:71–5. https://doi.org/10.1016/j.jneuroim.2015.08.002.

    Article  CAS  PubMed  Google Scholar 

  23. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10:241–7. https://doi.org/10.1038/ni.1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–8. https://doi.org/10.1038/nature18629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang K, Sun Q, Zhong X, Zeng M, Zeng H, Shi X, Li Z, Wang Y, Zhao Q, Shao F, Ding J. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell. 2020;180(941–955): e920. https://doi.org/10.1016/j.cell.2020.02.002.

    Article  CAS  Google Scholar 

  26. Israelov H, Ravid O, Atrakchi D, Rand D, Elhaik S, Bresler Y, Twitto-Greenberg R, Omesi L, Liraz-Zaltsman S, Gosselet F, et al. Caspase-1 has a critical role in blood-brain barrier injury and its inhibition contributes to multifaceted repair. J Neuroinflammation. 2020;17:267. https://doi.org/10.1186/s12974-020-01927-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flores J, Noel A, Foveau B, Lynham J, Lecrux C, LeBlanc AC. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat Commun. 2018;9:3916. https://doi.org/10.1038/s41467-018-06449-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Q, Dai Z, Cao Y, Wang L. Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-kappaB activation. Biochem Biophys Res Commun. 2019;513:479–85. https://doi.org/10.1016/j.bbrc.2019.03.202.

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Wang T, Zhang D, Li H, Shen H, Ding X, Chen G. Andrographolide ameliorates intracerebral hemorrhage induced secondary brain injury by inhibiting neuroinflammation induction. Neuropharmacology. 2018;141:305–15. https://doi.org/10.1016/j.neuropharm.2018.09.015.

    Article  CAS  PubMed  Google Scholar 

  30. Hu X, Chen H, Xu H, Wu Y, Wu C, Jia C, Li Y, Sheng S, Xu C, Xu H, et al. Role of pyroptosis in traumatic brain and spinal cord injuries. Int J Biol Sci. 2020;16:2042–50. https://doi.org/10.7150/ijbs.45467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barrington J, Lemarchand E, Allan SM. A brain in flame; do inflammasomes and pyroptosis influence stroke pathology? Brain Pathol. 2017;27:205–12. https://doi.org/10.1111/bpa.12476.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The role of NLRP3 inflammasome in cerebrovascular diseases pathology and possible therapeutic targets. ASN Neuro. 2021;13:17590914211018100. https://doi.org/10.1177/17590914211018100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu P, Hong Y, Xie Y, Yuan K, Li J, Sun R, Zhang X, Shi X, Li R, Wu J, et al. TREM-1 exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental subarachnoid hemorrhage. Transl Stroke Res. 2021;12:643–59. https://doi.org/10.1007/s12975-020-00840-x.

    Article  CAS  PubMed  Google Scholar 

  34. Lin X, Wei J, Nie J, Bai F, Zhu X, Zhuo L, Lu Z, Huang Q. Inhibition of RKIP aggravates thioacetamide-induced acute liver failure in mice. Exp Ther Med. 2018;16:2992–8. https://doi.org/10.3892/etm.2018.6542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez JA, Sobrino T, Lopez-Arias E, Ugarte A, Sanchez-Arias JA, Vieites-Prado A, de Miguel I, Oyarzabal J, Paramo JA, Campos F, et al: CM352 reduces brain damage and improves functional recovery in a rat model of intracerebral hemorrhage. J Am Heart Assoc 2017, 6. https://doi.org/10.1161/JAHA.117.006042

  36. Fu S, Luo X, Wu X, Zhang T, Gu L, Wang Y, Gao M, Cheng Y, Xie Z. Activation of the melanocortin-1 receptor by NDP-MSH attenuates oxidative stress and neuronal apoptosis through PI3K/Akt/Nrf2 pathway after intracerebral hemorrhage in mice. Oxid Med Cell Longev. 2020;2020:8864100. https://doi.org/10.1155/2020/8864100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie Z, Huang L, Enkhjargal B, Reis C, Wan W, Tang J, Cheng Y, Zhang JH. Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPARgamma/NFkappaB signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun. 2018;69:190–202. https://doi.org/10.1016/j.bbi.2017.11.012.

    Article  CAS  PubMed  Google Scholar 

  38. Wu X, Fu S, Liu Y, Luo H, Li F, Wang Y, Gao M, Cheng Y, Xie Z. NDP-MSH binding melanocortin-1 receptor ameliorates neuroinflammation and BBB disruption through CREB/Nr4a1/NF-kappaB pathway after intracerebral hemorrhage in mice. J Neuroinflammation. 2019;16:192. https://doi.org/10.1186/s12974-019-1591-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu Q, Enkhjargal B, Huang L, Zhang T, Sun C, Xie Z, Wu P, Mo J, Tang J, Xie Z, Zhang JH. Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-kappaB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation. 2018;15:178. https://doi.org/10.1186/s12974-018-1211-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao YY, Tao T, Wu D, Zhuang Z, Lu Y, Wu LY, Liu GJ, Zhou Y, Zhang DD, Wang H, et al. MFG-E8 attenuates inflammation in subarachnoid hemorrhage by driving microglial M2 polarization. Exp Neurol. 2021;336: 113532. https://doi.org/10.1016/j.expneurol.2020.113532.

    Article  CAS  PubMed  Google Scholar 

  41. Xie Z, Enkhjargal B, Reis C, Huang L, Wan W, Tang J, Cheng Y, Zhang JH: Netrin-1 preserves blood-brain barrier integrity through deleted in colorectal cancer/focal adhesion kinase/RhoA signaling pathway following subarachnoid hemorrhage in rats. J Am Heart Assoc 2017, 6. https://doi.org/10.1161/JAHA.116.005198

  42. Zheng X, Zhang L, Kuang Y, Venkataramani V, Jin F, Hein K, Zafeiriou MP, Lenz C, Moebius W, Kilic E, et al. Extracellular vesicles derived from neural progenitor cells–a preclinical evaluation for stroke treatment in mice. Transl Stroke Res. 2021;12:185–203. https://doi.org/10.1007/s12975-020-00814-z.

    Article  CAS  PubMed  Google Scholar 

  43. Mertens JC, Blanc-Guillemaud V, Claesen K, Cardona P, Hendriks D, Tyl B, Molina CA. Carboxypeptidase U (TAFIa) is rapidly activated and deactivated following thrombolysis and thrombectomy in stroke patients. Transl Stroke Res. 2021. https://doi.org/10.1007/s12975-021-00962-w.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen S, Mei S, Luo Y, Wu H, Zhang J, Zhu J. Gasdermin family: a promising therapeutic target for stroke. Transl Stroke Res. 2018;9:555–63. https://doi.org/10.1007/s12975-018-0666-3.

    Article  CAS  PubMed  Google Scholar 

  45. Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265:130–42. https://doi.org/10.1111/imr.12287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heinisch O, Zeyen T, Goldmann T, Prinz M, Huber M, Jung J, Arik E, Habib S, Slowik A, Reich A, et al. Erythropoietin abrogates post-ischemic activation of the NLRP3, NLRC4, and AIM2 inflammasomes in microglia/macrophages in a TAK1-dependent manner. Transl Stroke Res. 2021. https://doi.org/10.1007/s12975-021-00948-8.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xiao L, Zheng H, Li J, Wang Q, Sun H. Neuroinflammation mediated by NLRP3 inflammasome after intracerebral hemorrhage and potential therapeutic targets. Mol Neurobiol. 2020;57:5130–49. https://doi.org/10.1007/s12035-020-02082-2.

    Article  CAS  PubMed  Google Scholar 

  48. Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B, Ghetti B, Koller BH, LeBlanc AC. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ. 2015;22:1676–86. https://doi.org/10.1038/cdd.2015.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin W, Ma C, Su F, Jiang Y, Lai R, Zhang T, Sun K, Fan L, Cai Z, Li Z, et al. Raf kinase inhibitor protein mediates intestinal epithelial cell apoptosis and promotes IBDs in humans and mice. Gut. 2017;66:597–610. https://doi.org/10.1136/gutjnl-2015-310096.

    Article  CAS  PubMed  Google Scholar 

  50. Odabaei G, Chatterjee D, Jazirehi AR, Goodglick L, Yeung K, Bonavida B. Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv Cancer Res. 2004;91(91):169–200. https://doi.org/10.1016/S0065-230x(04)91005-6.

    Article  CAS  PubMed  Google Scholar 

  51. Wen Z, Shu Y, Gao C, Wang X, Qi G, Zhang P, Li M, Shi J, Tian B. CDK5-mediated phosphorylation and autophagy of RKIP regulate neuronal death in Parkinson’s disease. Neurobiol Aging. 2014;35:2870–80. https://doi.org/10.1016/j.neurobiolaging.2014.05.034.

    Article  CAS  PubMed  Google Scholar 

  52. Denes A, Lopez-Castejon G, Brough D. Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis. 2012;3: e338. https://doi.org/10.1038/cddis.2012.86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, Ruan J, Luo X, Lou X, Bai Y, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21:736–45. https://doi.org/10.1038/s41590-020-0669-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li J, Hao JH, Yao D, Li R, Li XF, Yu ZY, Luo X, Liu XH, Wang MH, Wang W. Caspase-1 inhibition prevents neuronal death by targeting the canonical inflammasome pathway of pyroptosis in a murine model of cerebral ischemia. CNS Neurosci Ther. 2020;26:925–39. https://doi.org/10.1111/cns.13384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Hong Wang, from Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, for providing experimental help.

Funding

This work was supported by the Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University (No. 201959), Venture & Innovation Support Program for Chongqing Overseas Returnees (No. CX2019156), Chongqing Science and Health Joint Medical Research Project (No. 2020GDRC006), and Chongqing Postgraduate Scientific Research Innovation Project (No.CYS20198).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization was performed by LG and ZX; material preparation, data collection, and analysis were performed by LG, MS, and YY; methodology and software were performed by LG, YT, and RL. The first draft of the manuscript was written by LG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zongyi Xie.

Ethics declarations

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All experimental procedures were implemented according to the National Institutes of Health guide for the care and use of Laboratory Animals and the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines and were approved by the Institutional Animal Care and Use Committee of Chongqing Medical University.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12975_2022_1009_MOESM1_ESM.pdf

Supplementary file1 (PDF 1581 kb) Supplementary Fig.S1 The delivery efficiency of intraperitoneal administration of Didymin and Lococstatin

12975_2022_1009_MOESM2_ESM.pdf

Supplementary file2 (PDF 79 kb) Supplementary Table S1 Summary of experimental groups, sample sizes, and mortality rate in the study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Sun, M., Li, R. et al. Activation of RKIP Binding ASC Attenuates Neuronal Pyroptosis and Brain Injury via Caspase-1/GSDMD Signaling Pathway After Intracerebral Hemorrhage in Mice. Transl. Stroke Res. 13, 1037–1054 (2022). https://doi.org/10.1007/s12975-022-01009-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01009-4

Keywords

Navigation