Skip to main content

Advertisement

Log in

Selective mGluR1 Negative Allosteric Modulator Reduces Blood–Brain Barrier Permeability and Cerebral Edema After Experimental Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The blood–brain barrier (BBB) disruption leads to the vasogenic brain edema and contributes to the early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the mechanisms underlying the BBB damage following SAH are poorly understood. Here we reported that the neurotransmitter glutamate of cerebrospinal fluid (CSF) was dramatically increased in SAH patients with symptoms of cerebral edema. Using the rat SAH model, we found that SAH caused the increase of CSF glutamate level and BBB permeability in EBI, intracerebroventricular injection of exogenous glutamate deteriorated BBB damage and cerebral edema, while intraperitoneally injection of metabotropic glutamate receptor 1(mGluR1) negative allosteric modulator JNJ16259685 significantly attenuated SAH-induced BBB damage and cerebral edema. In an in vitro BBB model, we showed that glutamate increased monolayer permeability of human brain microvascular endothelial cells (HBMEC), whereas JNJ16259685 preserved glutamate-damaged BBB integrity in HBMEC. Mechanically, glutamate downregulated the level and phosphorylation of vasodilator-stimulated phosphoprotein (VASP), decreased the tight junction protein occludin, and increased AQP4 expression at 72 h after SAH. However, JNJ16259685 significantly increased VASP, p-VASP, and occludin, and reduced AQP level at 72 h after SAH. Altogether, our results suggest an important role of glutamate in disruption of BBB function and inhibition of mGluR1 with JNJ16259685 reduced BBB damage and cerebral edema after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97(1):14–37. https://doi.org/10.1016/j.pneurobio.2012.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Duris K, Lipkova J, Splichal Z, Madaraszova T, Jurajda M. Early inflammatory response in the brain and anesthesia recovery time evaluation after experimental subarachnoid hemorrhage. Transl Stroke Res. 2018;10:308–18. https://doi.org/10.1007/s12975-018-0641-z.

    Article  CAS  Google Scholar 

  3. Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014;115:64–91. https://doi.org/10.1016/j.pneurobio.2013.09.002.

    Article  PubMed  Google Scholar 

  4. Li Z, Liang G, Ma T, Li J, Wang P, Liu L, et al. Blood-brain barrier permeability change and regulation mechanism after subarachnoid hemorrhage. Metab Brain Dis. 2015;30(2):597–603. https://doi.org/10.1007/s11011-014-9609-1.

    Article  CAS  PubMed  Google Scholar 

  5. Kanamaru H, Suzuki H. Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen Res. 2019;14(7):1138–43. https://doi.org/10.4103/1673-5374.251190.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nag S, Manias JL, Stewart DJ. Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol. 2009;118(2):197–217. https://doi.org/10.1007/s00401-009-0541-0.

    Article  PubMed  Google Scholar 

  7. Hayman EG, Wessell A, Gerzanich V, Sheth KN, Simard JM. Mechanisms of global cerebral edema formation in aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2017;26(2):301–10. https://doi.org/10.1007/s12028-016-0354-7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ivanidze J, Ferraro RA, Giambrone AE, Segal AZ, Gupta A, Sanelli PC. Blood-brain barrier permeability in aneurysmal subarachnoid hemorrhage: correlation with clinical outcomes. AJR Am J Roentgenol. 2018;211(4):891–5. https://doi.org/10.2214/AJR.17.18237.

    Article  PubMed  Google Scholar 

  9. Huang S, Cao J, Jiang M, Labesse G, Liu J, Pin JP, et al. Interdomain movements in metabotropic glutamate receptor activation. Proc Natl Acad Sci U S A. 2011;108(37):15480–5. https://doi.org/10.1073/pnas.1107775108.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vazana U, Veksler R, Pell GS, Prager O, Fassler M, Chassidim Y, et al. Glutamate-mediated blood-brain barrier opening: implications for neuroprotection and drug delivery. J Neurosci. 2016;36(29):7727–39. https://doi.org/10.1523/JNEUROSCI.0587-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Collard CD, Park KA, Montalto MC, Alapati S, Buras JA, Stahl GL, et al. Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem. 2002;277(17):14801–11. https://doi.org/10.1074/jbc.M110557200.

    Article  CAS  PubMed  Google Scholar 

  12. Sharp CD, Hines I, Houghton J, Warren A, Jackson TH, Jawahar A, et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol. 2003;285(6):H2592–8. https://doi.org/10.1152/ajpheart.00520.2003.

    Article  CAS  PubMed  Google Scholar 

  13. Andras IE, Deli MA, Veszelka S, Hayashi K, Hennig B, Toborek M. The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J Cereb Blood Flow Metab. 2007;27(8):1431–43. https://doi.org/10.1038/sj.jcbfm.9600445.

    Article  CAS  PubMed  Google Scholar 

  14. Jung CS, Lange B, Zimmermann M, Seifert V. CSF and serum biomarkers focusing on cerebral vasospasm and ischemia after subarachnoid hemorrhage. Stroke Res Treat. 2013;2013:560305. https://doi.org/10.1155/2013/560305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacobsen A, Nielsen TH, Nilsson O, Schalen W, Nordstrom CH. Bedside diagnosis of mitochondrial dysfunction in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand. 2014;130(3):156–63. https://doi.org/10.1111/ane.12258.

    Article  CAS  PubMed  Google Scholar 

  16. Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K. The temporal profile of cerebral blood flow and tissue metabolites indicates sustained metabolic depression after experimental subarachnoid hemorrhage in rats. Neurosurgery. 2011;68(1):223–9; discussion 9-30. https://doi.org/10.1227/NEU.0b013e3181fe23c1.

    Article  PubMed  Google Scholar 

  17. Rostami E, Engquist H, Howells T, Johnson U, Ronne-Engstrom E, Nilsson P, et al. Early low cerebral blood flow and high cerebral lactate: prediction of delayed cerebral ischemia in subarachnoid hemorrhage. J Neurosurg. 2018;128(6):1762–70. https://doi.org/10.3171/2016.11.JNS161140.

    Article  CAS  PubMed  Google Scholar 

  18. Sokol B, Urbaniak B, Wasik N, Plewa S, Klupczynska A, Jankowski R, et al. Amino acids in cerebrospinal fluid of patients with aneurysmal subarachnoid haemorrhage: an observational study. Front Neurol. 2017;8:438. https://doi.org/10.3389/fneur.2017.00438.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang Z, Liu J, Fan C, Mao L, Xie R, Wang S, et al. The GluN1/GluN2B NMDA receptor and metabotropic glutamate receptor 1 negative allosteric modulator has enhanced neuroprotection in a rat subarachnoid hemorrhage model. Exp Neurol. 2018;301(Pt A):13–25. https://doi.org/10.1016/j.expneurol.2017.12.005.

    Article  CAS  PubMed  Google Scholar 

  20. Wang W, Han P, Xie R, Yang M, Zhang C, Mi Q, et al. TAT-mGluR1 attenuation of neuronal apoptosis through prevention of MGluR1alpha truncation after experimental subarachnoid hemorrhage. ACS Chem Neurosci. 2019;10(1):746–56. https://doi.org/10.1021/acschemneuro.8b00531.

    Article  CAS  PubMed  Google Scholar 

  21. Lavreysen H, Wouters R, Bischoff F, Nobrega Pereira S, Langlois X, Blokland S, et al. JNJ16259685, a highly potent, selective and systemically active mGlu1 receptor antagonist. Neuropharmacology. 2004;47(7):961–72. https://doi.org/10.1016/j.neuropharm.2004.08.007.

    Article  CAS  PubMed  Google Scholar 

  22. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295–322. https://doi.org/10.1146/annurev.pharmtox.011008.145533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Zhang Z, Moreno-Delgado D, Dalton JA, Rovira X, Trapero A, et al. Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer. eLife. 2017;6. https://doi.org/10.7554/eLife.26985.

  24. Sarrafzadeh A, Haux D, Sakowitz O, Benndorf G, Herzog H, Kuechler I, et al. Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke. 2003;34(6):1382–8. https://doi.org/10.1161/01.STR.0000074036.97859.02.

    Article  CAS  PubMed  Google Scholar 

  25. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34. https://doi.org/10.1016/j.jneumeth.2007.08.004.

    Article  PubMed  Google Scholar 

  26. Zhang ZY, Sun BL, Liu JK, Yang MF, Li DW, Fang J, et al. Activation of mGluR5 attenuates microglial activation and neuronal apoptosis in early brain injury after experimental subarachnoid hemorrhage in rats. Neurochem Res. 2015;40(6):1121–32. https://doi.org/10.1007/s11064-015-1572-7.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang ZY, Jiang M, Fang J, Yang MF, Zhang S, Yin YX, et al. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood-brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol Neurobiol. 2017;54(1):1–14. https://doi.org/10.1007/s12035-015-9635-y.

    Article  CAS  PubMed  Google Scholar 

  28. Mao L, Li P, Zhu W, Cai W, Liu Z, Wang Y, et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain. 2017;140(7):1914–31. https://doi.org/10.1093/brain/awx111.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW. Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med. 2002;30(5):1062–70.

    Article  PubMed  Google Scholar 

  30. Samuelsson C, Hillered L, Zetterling M, Enblad P, Hesselager G, Ryttlefors M, et al. Cerebral glutamine and glutamate levels in relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab. 2007;27(7):1309–17. https://doi.org/10.1038/sj.jcbfm.9600433.

    Article  CAS  PubMed  Google Scholar 

  31. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002;33(5):1225–32.

    Article  PubMed  Google Scholar 

  32. Comerford KM, Lawrence DW, Synnestvedt K, Levi BP, Colgan SP. Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability. FASEB J. 2002;16(6):583–5. https://doi.org/10.1096/fj.01-0739fje.

    Article  CAS  PubMed  Google Scholar 

  33. Reinhard M, Halbrugge M, Scheer U, Wiegand C, Jockusch BM, Walter U. The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J. 1992;11(6):2063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu W, Wong TP, Chery N, Gaertner T, Wang YT, Baudry M. Calpain-mediated mGluR1alpha truncation: a key step in excitotoxicity. Neuron. 2007;53(3):399–412. https://doi.org/10.1016/j.neuron.2006.12.020.

    Article  CAS  PubMed  Google Scholar 

  35. Julio-Pieper M, Flor PJ, Dinan TG, Cryan JF. Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev. 2011;63(1):35–58. https://doi.org/10.1124/pr.110.004036.

    Article  CAS  PubMed  Google Scholar 

  36. Gillard SE, Tzaferis J, Tsui HC, Kingston AE. Expression of metabotropic glutamate receptors in rat meningeal and brain microvasculature and choroid plexus. J Comp Neurol. 2003;461(3):317–32. https://doi.org/10.1002/cne.10671.

    Article  CAS  PubMed  Google Scholar 

  37. Garzon-Muvdi T, Pradilla G, Ruzevick JJ, Bender M, Edwards L, Grossman R, et al. A glutamate receptor antagonist, S-4-carboxyphenylglycine (S-4-CPG), inhibits vasospasm after subarachnoid hemorrhage in haptoglobin 2-2 mice [corrected]. Neurosurgery. 2013;73(4):719–28; discussion 29. https://doi.org/10.1227/NEU.0000000000000080.

    Article  PubMed  Google Scholar 

  38. Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013;14(4):265–77. https://doi.org/10.1038/nrn3468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tait MJ, Saadoun S, Bell BA, Verkman AS, Papadopoulos MC. Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage. Neuroscience. 2010;167(1):60–7. https://doi.org/10.1016/j.neuroscience.2010.01.053.

    Article  CAS  PubMed  Google Scholar 

  40. Cao S, Zhu P, Yu X, Chen J, Li J, Yan F, et al. Hydrogen sulfide attenuates brain edema in early brain injury after subarachnoid hemorrhage in rats: possible involvement of MMP-9 induced blood-brain barrier disruption and AQP4 expression. Neurosci Lett. 2016;621:88–97. https://doi.org/10.1016/j.neulet.2016.04.018.

    Article  CAS  PubMed  Google Scholar 

  41. Qi W, Cao D, Li Y, Peng A, Wang Y, Gao K, et al. Atorvastatin ameliorates early brain injury through inhibition of apoptosis and ER stress in a rat model of subarachnoid hemorrhage. Biosci Rep. 2018;38(3). https://doi.org/10.1042/BSR20171035.

  42. Badaut J, Brunet JF, Grollimund L, Hamou MF, Magistretti PJ, Villemure JG, et al. Aquaporin 1 and aquaporin 4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue. Acta Neurochir Suppl. 2003;86:495–8.

    CAS  PubMed  Google Scholar 

  43. Saadoun S, Papadopoulos MC, Krishna S. Water transport becomes uncoupled from K+ siphoning in brain contusion, bacterial meningitis, and brain tumours: immunohistochemical case review. J Clin Pathol. 2003;56(12):972–5. https://doi.org/10.1136/jcp.56.12.972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gunnarson E, Zelenina M, Axehult G, Song Y, Bondar A, Krieger P, et al. Identification of a molecular target for glutamate regulation of astrocyte water permeability. Glia. 2008;56(6):587–96. https://doi.org/10.1002/glia.20627.

    Article  PubMed  Google Scholar 

  45. Shi Z, Zhang W, Lu Y, Lu Y, Xu L, Fang Q, et al. Aquaporin 4-mediated glutamate-induced astrocyte swelling is partially mediated through metabotropic glutamate receptor 5 activation. Front Cell Neurosci. 2017;11:116. https://doi.org/10.3389/fncel.2017.00116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by funds from the National Natural Science Foundation of China (Grant No. 81671141 and 81870938), the Taishan Scholars Project (to Bao-liang Sun), the Shanghai Science and Technology Commission (19431903200 to Ming Jiang), and the Youth Innovation Team of Shandong Universities (2019KJK001 to Zong-yong Zhang).

Author information

Authors and Affiliations

Authors

Contributions

BS and ZZ designed the experiments. CZ, JM, WW, SZ, YY, QM, YS, and MY performed the experiments. ZZ and BS analyzed the results. ZZ wrote the manuscript with contribution from BS. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bao-liang Sun or Zong-yong Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Jiang, M., Wang, Wq. et al. Selective mGluR1 Negative Allosteric Modulator Reduces Blood–Brain Barrier Permeability and Cerebral Edema After Experimental Subarachnoid Hemorrhage. Transl. Stroke Res. 11, 799–811 (2020). https://doi.org/10.1007/s12975-019-00758-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-019-00758-z

Keywords

Navigation