Skip to main content

Advertisement

Log in

Warfarin Pretreatment Reduces Cell Death and MMP-9 Activity in Experimental Intracerebral Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Little is known about the pathophysiology of oral anticoagulation-associated intracerebral hemorrhage (OAC-ICH). We compared hematoma volume, number of terminal deoxynucleotidyl dUTP nick-end labeling (TUNEL)-positive cells (indicating cell death), MMP-9 levels, and perilesional edema formation between warfarin-treated mice and controls. Intracerebral hemorrhage was induced by an injection of collagenase into the right striatum. Twenty-four hours later, hematoma volume was measured using a photometric hemoglobin assay. Cell death was quantified using TUNEL staining. MMP-9 levels were determined by zymography, and edema formation was assessed via the wet–dry method. Warfarin increased hematoma volume by 2.6-fold. The absolute number of TUNEL-positive cells in the perihematomal zone was lower in warfarin-treated animals (300.5 ± 39.8 cells/mm2) than in controls (430.5 ± 38.9 cells/mm2; p = 0.034), despite the larger bleeding volume. MMP-9 levels were reduced in anticoagulated mice as compared to controls (p = 0.018). Perilesional edema formation was absent in warfarin mice and modestly present in controls. Our results suggest differences in the pathophysiology of OAC-ICH compared to intracerebral hemorrhage occurring under normal coagulation. A likely explanation is that thrombin, a strong inductor of apoptotic cell death and blood–brain barrier disruption, is produced to a lesser extent in OAC-ICH. In humans, however, we assume that the detrimental effects of a larger hematoma volume in OAC-ICH by far outweigh potential protective effects of thrombin deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 3
Fig. 1
Fig. 2
Fig. 4
Fig 5

Similar content being viewed by others

References

  1. Steiner T, Rosand J, Diringer M. Intracerebral hemorrhage associated with oral anticoagulant therapy: current practices and unresolved questions. Stroke. 2006;37:256–62.

    Article  CAS  PubMed  Google Scholar 

  2. Sjalander A, Engstrom G, Berntorp E, Svensson P. Risk of haemorrhagic stroke in patients with oral anticoagulation compared with the general population. J Intern Med. 2003;254:434–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rosand J, Eckman MH, Knudsen KA, Singer DE, Greenberg SM. The effect of warfarin and intensity of anticoagulation on outcome of intracerebral hemorrhage. Arch Intern Med. 2004;164:880–4.

    Article  CAS  PubMed  Google Scholar 

  4. Flaherty ML, Tao H, Haverbusch M, et al. Warfarin use leads to larger intracerebral hematomas. Neurology. 2008;71:1084–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Flaherty ML, Haverbusch M, Sekar P, et al. Location and outcome of anticoagulant-associated intracerebral hemorrhage. Neurocrit Care. 2006;5:197–201.

    Article  PubMed  Google Scholar 

  6. Flibotte JJ, Hagan N, O’Donnell J, Greenberg SM, Rosand J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage. Neurology. 2004;63:1059–64.

    Article  CAS  PubMed  Google Scholar 

  7. Levine JM, Snider R, Finkelstein D, et al. Early edema in warfarin-related intracerebral hemorrhage. Neurocrit Care. 2007;7:58–63.

    Article  PubMed  Google Scholar 

  8. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.

    Article  PubMed  Google Scholar 

  9. Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke. 2007;38:759–62.

    Article  CAS  PubMed  Google Scholar 

  10. Donovan FM, Pike CJ, Cotman CW, Cunningham DD. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci. 1997;17:5316–26.

    CAS  PubMed  Google Scholar 

  11. Foerch C, Arai K, Jin G, et al. Experimental model of warfarin-associated intracerebral hemorrhage. Stroke. 2008;39:3397–404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Xue M, Del Bigio MR. Acute tissue damage after injections of thrombin and plasmin into rat striatum. Stroke. 2001;32:2164–9.

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005;128:1622–33.

    Article  PubMed  Google Scholar 

  14. Illanes S, Zhou W, Schwarting S, Heiland S, Veltkamp R. Comparative effectiveness of hemostatic therapy in experimental warfarin-associated intracerebral hemorrhage. Stroke. 2011;42:191–5.

    Article  CAS  PubMed  Google Scholar 

  15. Schlunk F, Van Cott EM, Hayakawa K, Pfeilschifter W, Lo EH, Foerch C. Recombinant activated coagulation factor VII and prothrombin complex concentrates are equally effective in reducing hematoma volume in experimental warfarin-associated intracerebral hemorrhage. Stroke. 2012;43:246–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Illanes S, Zhou W, Heiland S, Markus Z, Veltkamp R. Kinetics of hematoma expansion in murine warfarin-associated intracerebral hemorrhage. Brain Res. 2010;1320:135–42.

    Article  CAS  PubMed  Google Scholar 

  17. Foerch C, Arai K, Van Cott EM, van Leyen K, Lo EH. Rapid reversal of anticoagulation reduces hemorrhage volume in a mouse model of warfarin-associated intracerebral hemorrhage. J Cereb Blood Flow Metab. 2009;29:1015–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Xue M, Del Bigio MR. Injections of blood, thrombin, and plasminogen more severely damage neonatal mouse brain than mature mouse brain. Brain Pathol. 2005;15:273–80.

    Article  CAS  PubMed  Google Scholar 

  19. Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg. 1997;86:272–8.

    Article  CAS  PubMed  Google Scholar 

  20. Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective. J Neurochem. 2003;84:3–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kawakita K, Kawai N, Kuroda Y, Yasashita S, Nagao S. Expression of matrix metalloproteinase-9 in thrombin-induced brain edema formation in rats. J Stroke Cerebrovasc Dis. 2006;15:88–95.

    Article  PubMed  Google Scholar 

  22. Xue M, Hollenberg MD, Yong VW. Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci. 2006;26:10281–91.

    Article  CAS  PubMed  Google Scholar 

  23. Thirumangalakudi L, Rao HV, Grammas P. Involvement of PGE2 and PGDH but not COX- 2 in thrombin-induced cortical neuron apoptosis. Neurosci Lett. 2009;452:172–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Rao HV, Thirumangalakudi L, Desmond P, Grammas P. Cyclin D1, cdk4, and Bim are involved in thrombin-induced apoptosis in cultured cortical neurons. J Neurochem. 2007;101:498–505.

    Article  CAS  PubMed  Google Scholar 

  25. Rosell A, Ortega-Aznar A, Alvarez-Sabin J, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke. 2006;37:1399–406.

    Article  CAS  PubMed  Google Scholar 

  26. Wu H, Zhang Z, Li Y, et al. Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: correlation with brain edema. Neurochem Int. 2010;57:248–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ichikawa K, Yanagihara C. Sedimentation level in acute intracerebral hematoma in a patient receiving anticoagulation therapy: an autopsy study. Neuroradiology. 1998;40:380–2.

    Article  CAS  PubMed  Google Scholar 

  28. Gulati G, Hevelow M, George M, Behling E, Siegel J. International normalized ratio versus plasma levels of coagulation factors in patients on vitamin K antagonist therapy. Arch Pathol Lab Med. 2011;135:490–4.

    PubMed  Google Scholar 

Download references

Acknowledgments

None.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieder Schlunk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlunk, F., Schulz, E., Lauer, A. et al. Warfarin Pretreatment Reduces Cell Death and MMP-9 Activity in Experimental Intracerebral Hemorrhage. Transl. Stroke Res. 6, 133–139 (2015). https://doi.org/10.1007/s12975-014-0377-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0377-3

Keywords

Navigation