Skip to main content

Advertisement

Log in

Early edema in warfarin-related intracerebral hemorrhage

  • Original Paper
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background and purpose

The pathophysiology and clinical significance of perihematomal edema (PHE), a cause of secondary neuronal injury after intracerebral hemorrhage (ICH), is poorly understood. A leading theory proposes that early PHE results from activation of the clotting cascade. We sought to test this theory by examining the relationship between early PHE and warfarin use in ICH patients.

Methods

ICH and PHE volumes were measured in consecutive patients with warfarin-related ICH and compared to those of controls with non-coagulopathic ICH. Subjects were identified from a prospective database of ICH patients. Clinical and radiological predictors of PHE volume and relative PHE (PHE volume/ICH volume) were identified. The relationship between PHE volume and 90-day mortality was determined.

Results

For the 49 consecutive warfarin-related ICH patients and 49 matched controls: median INRs (interquartile ranges) were 3.2 (2.3, 4.1) and 1.1 (1.08, 1.2); median hematoma volumes were 37.8 cm3 (6.7, 102.9) and 18.1 cm3 (9, 51) (P = 0.18); median PHE volumes were 12 cm3 (3.7, 36.7), and 11 cm3 (4.1, 24) (P = 0.87); and median relative PHE was 0.38 (0.28, 0.52) and 2 (1.37, 3.06), respectively. In multivariable analysis, ICH volume and warfarin use independently predicted PHE volume. There was an association between higher PHE volume and decreased 90-day mortality.

Conclusions

Warfarin-related ICH is associated with less early relative edema than non-coagulopathic ICH. This is consistent with the theory that coagulation contributes to early edema. Early edema may be associated with improved functional outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med 2001;344(19):1450–60.

    Article  PubMed  CAS  Google Scholar 

  2. Broderick JP, Adams HP Jr, Barsan W, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 1999;30(4):905–15.

    PubMed  CAS  Google Scholar 

  3. Foulkes MA, Wolf PA, Price TR, Mohr JP, Hier DB. The Stroke Data Bank: design, methods, and baseline characteristics. Stroke 1988;19(5):547–54.

    PubMed  CAS  Google Scholar 

  4. Xi G, Keep RF, Hoff JT. Pathophysiology of brain edema formation. Neurosurg Clin N Am 2002;13(3):371–83.

    Article  PubMed  Google Scholar 

  5. Broderick J, Brott T, Tomsick T, Tew J, Duldner J, Huster G. Management of intracerebral hemorrhage in a large metropolitan population. Neurosurgery 1994;34(5):882–7 [discussion 7].

    Article  PubMed  CAS  Google Scholar 

  6. Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke 1999;30(6):1167–73.

    PubMed  CAS  Google Scholar 

  7. Lee KR, Colon GP, Betz AL, Keep RF, Kim S, Hoff JT. Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg 1996;84(1):91–6.

    PubMed  CAS  Google Scholar 

  8. Lee KR, Betz AL, Keep RF, Chenevert TL, Kim S, Hoff JT. Intracerebral infusion of thrombin as a cause of brain edema. J Neurosurg 1995;83(6):1045–50.

    PubMed  CAS  Google Scholar 

  9. Betz AL, Iannotti F, Hoff JT. Brain edema: a classification based on blood-brain barrier integrity. Cerebrovasc Brain Metab Rev 1989;1(2):133–54.

    PubMed  CAS  Google Scholar 

  10. Wagner KR, Xi G, Hua Y, et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke 1996;27(3):490–7.

    PubMed  CAS  Google Scholar 

  11. Hua Y, Xi G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg 2000;92(6):1016–22.

    PubMed  CAS  Google Scholar 

  12. Xi G, Hua Y, Keep RF, Younger JG, Hoff JT. Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke 2001;32(1):162–7.

    PubMed  CAS  Google Scholar 

  13. Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg 1998;89(6):991–6.

    Article  PubMed  CAS  Google Scholar 

  14. Wagner KR, Hua Y, de Courten-Myers GM, et al. Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in␣vivo and in␣vitro studies. Cell Mol Biol (Noisy-le-grand) 2000;46(3):597–608.

    CAS  Google Scholar 

  15. Suttner DM, Dennery PA. Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. Faseb J 1999;13(13):1800–9.

    PubMed  CAS  Google Scholar 

  16. Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg 2002;96(2):287–93.

    PubMed  Google Scholar 

  17. Lee KR, Betz AL, Kim S, Keep RF, Hoff JT. The role of the coagulation cascade in brain edema formation after intracerebral hemorrhage. Acta Neurochir (Wien) 1996;138(4):396–400 [discussion -1].

    Article  CAS  Google Scholar 

  18. Gebel JM Jr, Jauch EC, Brott TG, et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002;33(11):2636–41.

    Article  PubMed  Google Scholar 

  19. Gebel JM Jr, Jauch EC, Brott TG, et al. Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002;33(11):2631–5.

    Article  PubMed  Google Scholar 

  20. Xi G, Wagner KR, Keep RF, et al. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke 1998;29(12):2580–6.

    PubMed  CAS  Google Scholar 

  21. Gebel JM, Brott TG, Sila CA, et al. Decreased perihematomal edema in thrombolysis-related intracerebral hemorrhage compared with spontaneous intracerebral hemorrhage. Stroke 2000;31(3):596–600.

    PubMed  CAS  Google Scholar 

  22. Mayer SA, Brun NC, Begtrup K, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 2005;352(8):777–85.

    Article  PubMed  CAS  Google Scholar 

  23. Rosand J, Eckman MH, Knudsen KA, Singer DE, Greenberg SM. The effect of warfarin and intensity of anticoagulation on outcome of intracerebral hemorrhage. Arch Intern Med 2004;164(8):880–4.

    Article  PubMed  CAS  Google Scholar 

  24. Flibotte JJ, Hagan N, O’Donnell J, Greenberg SM, Rosand J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage. Neurology 2004;63(6):1059–64.

    PubMed  CAS  Google Scholar 

  25. O’Donnell HC, Rosand J, Knudsen KA, et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med 2000;342(4):240–5.

    Article  PubMed  CAS  Google Scholar 

  26. Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke 2001;32(4):891–7.

    PubMed  Google Scholar 

  27. Wagner KR, Xi G, Hua Y, et al. Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: edema reduction and blood-brain barrier protection. J Neurosurg 1999;90(3):491–8.

    PubMed  CAS  Google Scholar 

  28. Gebel JM, Sila CA, Sloan MA, et al. Thrombolysis-related intracranial hemorrhage: a radiographic analysis of 244 cases from the GUSTO-1 trial with clinical correlation. Global utilization of streptokinase and tissue plasminogen activator for occluded coronary arteries. Stroke 1998;29(3):563–9.

    PubMed  CAS  Google Scholar 

  29. Furie KL, Rosenberg R, Thompson JL, et al. Thrombin generation in non-cardioembolic stroke subtypes: the Hemostatic System Activation Study. Neurology 2004;63(5):777–84.

    PubMed  CAS  Google Scholar 

  30. Millenson MM, Bauer KA, Kistler JP, Barzegar S, Tulin L, Rosenberg RD. Monitoring “mini-intensity” anticoagulation with warfarin: comparison of the prothrombin time using a sensitive thromboplastin with prothrombin fragment F1+2 levels. Blood 1992;79(8):2034–8.

    PubMed  CAS  Google Scholar 

  31. MacCallum PK, Rudnicka AR, Rumley A, Meade TW, Lowe GD. Low-intensity warfarin reduces thrombin generation and fibrin turnover, but not low-grade inflammation, in men at risk of myocardial infarction. Br J Haematol 2004;127(4):448–50.

    Article  PubMed  CAS  Google Scholar 

  32. Woo J, Lam CW, Kay R, Wong AH, Teoh R, Nicholls MG. The influence of hyperglycemia and diabetes mellitus on immediate and 3-month morbidity and mortality after acute stroke. Arch Neurol 1990;47(11):1174–7.

    PubMed  CAS  Google Scholar 

  33. Demchuk AM, Morgenstern LB, Krieger DW, et al. Serum glucose level and diabetes predict tissue plasminogen activator-related intracerebral hemorrhage in acute ischemic stroke. Stroke 1999;30(1):34–9.

    PubMed  CAS  Google Scholar 

  34. Uemura S, Matsushita H, Li W, et al. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res 2001;88(12):1291–8.

    PubMed  CAS  Google Scholar 

  35. Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J, Alvarez-Sabin J. Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg 2003;99(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  36. Alvarez-Sabin J, Delgado P, Abilleira S, et al. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 2004;35(6):1316–22.

    Article  PubMed  CAS  Google Scholar 

  37. Montaner J, Alvarez-Sabin J, Molina CA, et al. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 2001;32(12):2762–7.

    PubMed  CAS  Google Scholar 

  38. Gebel JM, Sila CA, Sloan MA, et al. Comparison of the ABC/2 estimation technique to computer-assisted volumetric analysis of intraparenchymal and subdural hematomas complicating the GUSTO-1 trial. Stroke 1998;29(9):1799–801.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank David N. Levine, MD for his critical review of this manuscript and Chana Engel, BA for her help in organizing this study. This work was funded by grants from The National Institute of Neurological Disorders and Stroke (K23 NS42695-01 and R01 NS042147-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, J.M., Snider, R., Finkelstein, D. et al. Early edema in warfarin-related intracerebral hemorrhage. Neurocrit Care 7, 58–63 (2007). https://doi.org/10.1007/s12028-007-0039-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-007-0039-3

Keywords

Navigation