Skip to main content
Log in

Imaging in Deciphering Histological Substrates in Hypertrophic Cardiomyopathy

  • Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Over the last 5 years, there has been great interest in how advanced imaging can be used in hypertrophic cardiomyopathy (HCM) to better understand the disease and improve patient diagnosis, monitoring and outcomes. The role of imaging has progressed beyond its initial purpose of simply identifying hypertrophic regions of myocardium, and now has the potential for in vivo tissue characterization reflecting the pathological histological underlying changes. This article aims to review the recent developments in advanced imaging and their potential clinical implications in HCM. The majority of these developments have occurred in the field of cardiac magnetic resonance (CMR) imaging, which is reflected in CMR forming a large proportion of the article, with other non-CMR techniques discussed in relation to these findings. Realizing the histological progression of HCM through advanced imaging has the potential to revolutionize diagnosis, management and future treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HCM:

Hypertrophic cardiomyopathy

LGE:

Late gadolinium enhancement

CMR:

Cardiac magnetic resonance imaging

T1:

T1 relaxation time

SCD:

Sudden cardiac death

deMDCT:

Delayed contrast Multidetector computed tomography

ICD:

Implantable cardioverter defibrillator

LVEF:

Left ventricular ejection fraction

GBCA:

Gadolinium-based contrast agent

MVD:

Microvascular dysfunction

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Maron BJ, McKenna WJ, Danielson GK, et al. American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. Eur Heart J. 2003;24:1965–91.

    Article  PubMed  Google Scholar 

  2. Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies. N Engl J Med. 2011;364:1643–56.

    Article  CAS  PubMed  Google Scholar 

  3. Towbin JA, Bowles NE. The failing heart. Nature. 2002;415:227–33.

    Article  CAS  PubMed  Google Scholar 

  4. Maron BJ, Gardin JM, Flack JM, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation. 1995;92:785–9.

    Article  CAS  PubMed  Google Scholar 

  5. Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79.

    Article  PubMed  Google Scholar 

  6. Olivotto I, Cecchi F, Poggesi C, et al. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circulat Heart Fail. 2012;5:535–46.

    Article  Google Scholar 

  7. Maron BJ, Ommen SR, Semsarian C, et al. Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol. 2014;64:83–99.

    Article  PubMed  Google Scholar 

  8. Bogun FM, Desjardins B, Good E, et al. Delayed-enhanced magnetic resonance imaging in nonischemic cardiomyopathy: utility for identifying the ventricular arrhythmia substrate. J Am Coll Cardiol. 2009;53:1138–45.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Elliott P, McKenna WJ. Hypertrophic cardiomyopathy. Lancet. 2004;363:1881–91. Important overview of HCM.

    Article  CAS  PubMed  Google Scholar 

  10. Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2001;33:655–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Olivotto I, d’Amati G, Basso C, et al. Defining phenotypes and disease progression in sarcomeric cardiomyopathies: contemporary role of clinical investigations. Cardiovasc Res. 2015;105:409–23.

    Article  PubMed  Google Scholar 

  12. Rickers C, Wilke NM, Jerosch-Herold M, et al. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation. 2005;112:855–61.

    Article  PubMed  Google Scholar 

  13. Hasenfuss G. Sarcomeric cardiomyopathies: from bedside to bench and back. Cardiovasc Res. 2015;105:395–6.

    Article  PubMed  Google Scholar 

  14. Pattanayak P, Bleumke DA. Tissue characterization of the myocardium: state of the art characterization by magnetic resonance and computed tomography imaging. Radiol Clin North Am. 2015;53:413–23.

    Article  PubMed  Google Scholar 

  15. Shirani J, Pick R, Roberts WC, et al. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol. 2000;35:36–44.

    Article  CAS  PubMed  Google Scholar 

  16. Ho CY, Lopez B, Coelho-Filho OR, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med. 2010;363:552–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Basso C, Thiene G, Corrado D, et al. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol. 2000;31:988–98.

    Article  CAS  PubMed  Google Scholar 

  18. Croisille P, Revel D, Saeed M. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside. Eur Radiol. 2006;16:1951–63.

    Article  PubMed  Google Scholar 

  19. Wesbey GE, Higgins CB, McNamara MT, et al. Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium. Radiology. 1984;153:165–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lehrke S, Lossnitzer D, Schob M, et al. Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart. 2011;97:727–32.

    Article  PubMed  Google Scholar 

  21. Yokota H, Imai Y, Tsuboko Y, et al. Nocturnal blood pressure pattern affects left ventricular remodeling and late gadolinium enhancement in patients with hypertension and left ventricular hypertrophy. PLoS One. 2013;8:e67825.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Nagai T, Kohsaka S, Okuda S, et al. Incidence and prognostic significance of myocardial late gadolinium enhancement in patients with sarcoidosis without cardiac manifestation. Chest. 2014;146:1064–72.

    Article  PubMed  Google Scholar 

  23. Radunski UK, Lund GK, Stehning C, et al. CMR in patients with severe myocarditis: diagnostic value of quantitative tissue markers including extracellular volume imaging. J Am Coll Cardiol Img. 2014;7:667–75.

    Article  Google Scholar 

  24. Kwon DH, Smedira NG, Rodriguez ER, et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol. 2009;54:242–9.

    Article  PubMed  Google Scholar 

  25. Simonetti OP, Kim RJ, Fieno DS, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 2001;218:215–23.

    Article  CAS  PubMed  Google Scholar 

  26. Moravsky G, Ofek E, Rakowski H, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR. J Am Coll Cardiol Img. 2013;6:587–96.

    Article  Google Scholar 

  27. Funada A, Kanzaki H, Noguchi T, et al. Prognostic significance of late gadolinium enhancement quantification in cardiac magnetic resonance imaging of hypertrophic cardiomyopathy with systolic dysfunction. Heart Vessels 2015.

  28. Appelbaum E, Maron BJ, Adabag S, et al. Intermediate-signal-intensity late gadolinium enhancement predicts ventricular tachyarrhythmias in patients with hypertrophic cardiomyopathy. Circulat Cardiovasc Imag. 2012;5:78–85.

    Article  Google Scholar 

  29. Choudhury L, Mahrholdt H, Wagner A, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40:2156–64.

    Article  PubMed  Google Scholar 

  30. Teraoka K, Hirano M, Ookubo H, et al. Delayed contrast enhancement of MRI in hypertrophic cardiomyopathy. Magn Reson Imaging. 2004;22:155–61.

    Article  PubMed  Google Scholar 

  31. Kwon DH, Setser RM, Popovic ZB, et al. Association of myocardial fibrosis, electrocardiography and ventricular tachyarrhythmia in hypertrophic cardiomyopathy: a delayed contrast enhanced MRI study. Int J Cardiovasc Imag. 2008;24:617–25.

    Article  Google Scholar 

  32. Moon JC, McKenna WJ, McCrohon JA, et al. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol. 2003;41:1561–7.

    Article  PubMed  Google Scholar 

  33. O’Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.

    Article  PubMed  Google Scholar 

  34. Bruder O, Wagner A, Jensen CJ, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:875–87.

    Article  PubMed  Google Scholar 

  35. Maron MS, Appelbaum E, Harrigan CJ, et al. Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circulat Heart Fail. 2008;1:184–91.

    Article  Google Scholar 

  36. Green JJ, Berger JS, Kramer CM, et al. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. J Am Coll Cardiol Img. 2012;5:370–7. Important LGE meta-analysis.

    Article  Google Scholar 

  37. Rubinshtein R, Glockner JF, Ommen SR, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circulat Heart Fail. 2010;3:51–8.

    Article  Google Scholar 

  38. Hen Y, Iguchi N, Utanohara Y, et al. Prognostic value of late gadolinium enhancement on cardiac magnetic resonance imaging in Japanese hypertrophic cardiomyopathy patients. Circulat J : Off J Jap Circulat Soc. 2014;78:929–37.

    Article  Google Scholar 

  39. Hanneman K, Crean AM, Williams L, et al. Cardiac magnetic resonance imaging findings predict major adverse events in apical hypertrophic cardiomyopathy. J Thorac Imaging. 2014;29:331–9.

    Article  PubMed  Google Scholar 

  40. Dawson DK, Hawlisch K, Prescott G, et al. Prognostic role of CMR in patients presenting with ventricular arrhythmias. J Am Coll Cardiol Img. 2013;6:335–44. Important LGE risk analysis.

    Article  Google Scholar 

  41. Chan W, Duffy SJ, White DA, et al. Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with remote extracellular matrix expansion. J Am Coll Cardiol Img. 2012;5:884–93.

    Article  Google Scholar 

  42. Prinz C, Schwarz M, Ilic I, et al. Myocardial fibrosis severity on cardiac magnetic resonance imaging predicts sustained arrhythmic events in hypertrophic cardiomyopathy. Can J Cardiol. 2013;29:358–63.

    Article  PubMed  Google Scholar 

  43. Kwon DH, Halley CM, Carrigan TP, et al. Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function: a delayed hyperenhancement cardiac magnetic resonance study. J Am Coll Cardiol Img. 2009;2:34–44.

    Article  Google Scholar 

  44. Fujita T, Konno T, Yokawa J, et al. Increased extent of myocardial fibrosis in genotyped hypertrophic cardiomyopathy with ventricular tachyarrhythmias. J Cardiol 2014.

  45. Sakamoto N, Sato N, Oikawa K, et al. Late gadolinium enhancement of cardiac magnetic resonance imaging indicates abnormalities of time-domain T-wave alternans in hypertrophic cardiomyopathy with ventricular tachycardia. Heart Rhythm : Off J Heart Rhythm Society 2015.

  46. Sakamoto N, Kawamura Y, Sato N, et al. Late gadolinium enhancement on cardiac magnetic resonance represents the depolarizing and repolarizing electrically damaged foci causing malignant ventricular arrhythmia in hypertrophic cardiomyopathy. Heart rhythm : Off J Heart Rhythm Soc. 2015;12:1276–84. Important and recent relationship between LGE and endocardial scar and location of arrhythmias.

    Article  Google Scholar 

  47. Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–95.

    Article  PubMed  Google Scholar 

  48. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e212–60.

    Article  CAS  PubMed  Google Scholar 

  49. Choi HM, Kim KH, Lee JM, et al. Myocardial fibrosis progression on cardiac magnetic resonance in hypertrophic cardiomyopathy. Heart. 2015;101:870–6.

    Article  PubMed  Google Scholar 

  50. Shimada YJ, Passeri JJ, Baggish AL, et al. Effects of losartan on left ventricular hypertrophy and fibrosis in patients with nonobstructive hypertrophic cardiomyopathy. JACC Heart Fail. 2013;1:480–7.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Lardo AC, Cordeiro MA, Silva C, et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation. 2006;113:394–404.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Bettencourt N, Ferreira ND, Leite D, et al. CAD detection in patients with intermediate-high pre-test probability: low-dose CT delayed enhancement detects ischemic myocardial scar with moderate accuracy but does not improve performance of a stress-rest CT perfusion protocol. J Am Coll Cardiol Img. 2013;6:1062–71.

    Article  Google Scholar 

  53. Lessick J, Abadi S, Agmon Y, et al. Multidetector computed tomography predictors of late ventricular remodeling and function after acute myocardial infarction. Eur J Radiol. 2012;81:2648–57.

    Article  PubMed  Google Scholar 

  54. Shiozaki AA, Santos TS, Artega E, et al. Images in cardiovascular medicine. Myocardial delayed enhancement by computed tomography in hypertrophic cardiomyopathy. Circulation. 2007;115:e430–1.

    Article  PubMed  Google Scholar 

  55. Berliner JI, Kino A, Carr JC, et al. Cardiac computed tomographic imaging to evaluate myocardial scarring/fibrosis in patients with hypertrophic cardiomyopathy: a comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imag. 2013;29:191–7.

    Article  Google Scholar 

  56. Langer C, Lutz M, Eden M, et al. Hypertrophic cardiomyopathy in cardiac CT: a validation study on the detection of intramyocardial fibrosis in consecutive patients. Int J Cardiovasc Imag. 2014;30:659–67.

    Article  CAS  Google Scholar 

  57. Shiozaki AA, Senra T, Arteaga E, et al. Myocardial fibrosis detected by cardiac CT predicts ventricular fibrillation/ventricular tachycardia events in patients with hypertrophic cardiomyopathy. J Cardiovasc Comput Tomograp. 2013;7:173–81.

    Article  Google Scholar 

  58. Serri K, Reant P, Lafitte M, et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006;47:1175–81.

    Article  PubMed  Google Scholar 

  59. Popovic ZB, Kwon DH, Mishra M, et al. Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J Am Soc Echocardiogr. 2008;21:1299–305.

    Article  PubMed  Google Scholar 

  60. Saito M, Okayama H, Yoshii T, et al. Clinical significance of global two-dimensional strain as a surrogate parameter of myocardial fibrosis and cardiac events in patients with hypertrophic cardiomyopathy. Europ Heart J Cardiovasc Imag. 2012;13:617–23.

    Article  Google Scholar 

  61. Di Salvo G, Pacileo G, Limongelli G, et al. Non sustained ventricular tachycardia in hypertrophic cardiomyopathy and new ultrasonic derived parameters. J Am Soc Echocardiogr. 2010;23:581–90.

    Article  PubMed  Google Scholar 

  62. Amano Y, Kumita S, Takayama M, et al. Comparison of contrast-enhanced MRI with iodine-123 BMIPP for detection of myocardial damage in hypertrophic cardiomyopathy. AJR Am J Roentgenol. 2005;185:312–8.

    Article  PubMed  Google Scholar 

  63. Kuusisto J, Karja V, Sipola P, et al. Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart. 2012;98:1007–13.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Abdel-Aty H, Cocker M, Strohm O, et al. Abnormalities in T2-weighted cardiovascular magnetic resonance images of hypertrophic cardiomyopathy: regional distribution and relation to late gadolinium enhancement and severity of hypertrophy. J Magn Reson Imaging. 2008;28:242–5.

    Article  PubMed  Google Scholar 

  65. Hen Y, Iguchi N, Machida H, et al. High signal intensity on T2-weighted cardiac magnetic resonance imaging correlates with the ventricular tachyarrhythmia in hypertrophic cardiomyopathy. Heart Vessel. 2013;28:742–9.

    Article  Google Scholar 

  66. Todiere G, Pisciella L, Barison A, et al. Abnormal T2-STIR magnetic resonance in hypertrophic cardiomyopathy: a marker of advanced disease and electrical myocardial instability. PLoS One. 2014;9:e111366.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83:1849–65.

    Article  CAS  PubMed  Google Scholar 

  68. Bhuva AN, Treibel TA, Fontana M, et al. T1 mapping: non-invasive evaluation of myocardial tissue composition by cardiovascular magnetic resonance. Expert Rev Cardiovasc Ther. 2014;12:1455–64.

    Article  CAS  PubMed  Google Scholar 

  69. Caspari PG, Gibson K, Harris P. Changes in myocardial collagen in normal development and after beta blockade. Rec Adv Stud Cardiac Struct Metab. 1975;7:99–104.

    CAS  Google Scholar 

  70. Fang L, Beale A, Ellims AH, et al. Associations between fibrocytes and postcontrast myocardial T1 times in hypertrophic cardiomyopathy. J Am Heart Assoc. 2013;2:e000270.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med. 1999;341:709–17.

    Article  CAS  PubMed  Google Scholar 

  72. Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investig Circulat. 2000;102:2700–6.

    Article  CAS  Google Scholar 

  73. Nagel E, Narula J. Evolution and revolution in CMR imaging. J Am Coll Cardiol Img. 2013;6:837–8.

    Article  Google Scholar 

  74. Treibel TA, White SK, Moon JC. Myocardial tissue characterization: histological and pathophysiological correlation. Curr Cardiovasc Imag Rep. 2014;7:9254.

    Article  Google Scholar 

  75. Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magnet Resonance : Off J Soc Cardiovasc Magnet Resonance. 2013;15:92. Overview of the use of T1 mapping.

    Article  Google Scholar 

  76. Liu S, Han J, Nacif MS, et al. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. J Cardiovasc Magnet Resonance : Off J Soc Cardiovasc Magnet Resonance. 2012;14:90.

    Article  CAS  Google Scholar 

  77. Hwang SH, Advanced CBW, Cardiac MR. Imaging for myocardial characterization and quantification: T1 mapping. Korean Circulat J. 2013;43:1–6.

    Article  Google Scholar 

  78. Rogers T, Dabir D, Mahmoud I, et al. Standardization of T1 measurements with MOLLI in differentiation between health and disease--the ConSept study. J Cardiovasc Magnet Resonance : Off J Soc Cardiovasc Magnet Resonance. 2013;15:78. The use of clinical T1 mapping.

    Article  Google Scholar 

  79. Messroghli DR, Radjenovic A, Kozerke S, et al. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141–6.

    Article  PubMed  Google Scholar 

  80. Piechnik SK, Ferreira VM, Dall’Armellina E, et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magnet Resonance : Off J Soc Cardiovasc Magnet Resonance. 2010;12:69.

    Article  Google Scholar 

  81. DM H, JC M. Review of T1 mapping methods: comparative effectiveness including reproducibility issues. Curr Cardiovasc Imag Rep. 2014;7:9252.

    Article  Google Scholar 

  82. Dabir D, Child N, Kalra A. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magnet Resonance : Off J Soc Cardiovasc Magnet Resonance. 2014;16:69.

    Article  Google Scholar 

  83. Messroghli DR, Greiser A, Frohlich M, et al. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging. 2007;26:1081–6.

    Article  PubMed  Google Scholar 

  84. Kehr E, Sono M, Chugh SS, et al. Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. Int J Cardiovasc Imag. 2008;24:61–8.

    Article  Google Scholar 

  85. Messroghli DR, Niendorf T, Schulz-Menger J, et al. T1 mapping in patients with acute myocardial infarction. J Cardiovasc Magnet Resonance : Off J Soc Cardiovasc Magnet Resonance. 2003;5:353–9.

    Article  Google Scholar 

  86. Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. J Am Coll Cardiol Img. 2013;6:475–84. The use of T1 in HCM.

    Article  Google Scholar 

  87. Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126:1206–16.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Dass S, Suttie JJ, Piechnik SK, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circulat Cardiovasc Imag. 2012;5:726–33.

    Article  Google Scholar 

  89. Kachenoura N, Besson-Hajji L, Graves MJ, et al. Kinetic index combining native and postcontrast myocardial T1 in hypertrophic cardiomyopathy. J Magn Reson Imaging 2015.

  90. Ellims AH, Iles LM, Ling LH, et al. A comprehensive evaluation of myocardial fibrosis in hypertrophic cardiomyopathy with cardiac magnetic resonance imaging: linking genotype with fibrotic phenotype. Europ Heart J Cardiovasc Imag. 2014;15:1108–16.

    Article  Google Scholar 

  91. Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122:138–44.

    Article  PubMed  Google Scholar 

  92. Ho CY, Abbasi SA, Neilan TG, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circulat Cardiovasc Imag. 2013;6:415–22.

    Article  Google Scholar 

  93. Malek LA, Werys K, Klopotowski M, et al. Native T1-mapping for non-contrast assessment of myocardial fibrosis in patients with hypertrophic cardiomyopathy—comparison with late enhancement quantification. Magn Reson Imaging. 2015;33:718–24.

    Article  PubMed  Google Scholar 

  94. Wang C, Zheng J, Sun J, et al. Endogenous contrast T1rho cardiac magnetic resonance for myocardial fibrosis in hypertrophic cardiomyopathy patients. J Cardiol 2015.

  95. Nacif MS, Kawel N, Lee JJ, et al. Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology. 2012;264:876–83.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Bandula S, White SK, Flett AS, et al. Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology. 2013;269:396–403.

    Article  PubMed  Google Scholar 

  97. Almaas VM, Haugaa KH, Strom EH, et al. Increased amount of interstitial fibrosis predicts ventricular arrhythmias, and is associated with reduced myocardial septal function in patients with obstructive hypertrophic cardiomyopathy. Europace : European Pacing, Arrhythmias, Cardiac Electrophysiol: J Work Group Cardiac Pacing, arrhythmias, Cardiac Cell Electrophysiol Europ Soc Cardiol. 2013;15:1319–27.

    Article  Google Scholar 

  98. Correia E, Rodrigues B, Santos LF, et al. Longitudinal left ventricular strain in hypertrophic cardiomyopathy: correlation with nonsustained ventricular tachycardia. Echocardiography. 2011;28:709–14.

    Article  PubMed  Google Scholar 

  99. Zhang YD, Li M, Qi L, et al. Hypertrophic cardiomyopathy: cardiac structural and microvascular abnormalities as evaluated with multi-parametric MRI. Eur J Radiol 2015.

  100. Timmer SA, Knaapen P. Coronary microvascular function, myocardial metabolism, and energetics in hypertrophic cardiomyopathy: insights from positron emission tomography. Europ Heart J Cardiovasc Imag. 2013;14:95–101.

    Article  Google Scholar 

  101. Olivotto I, Cecchi F, Gistri R, et al. Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006;47:1043–8.

    Article  PubMed  Google Scholar 

  102. Cecchi F, Olivotto I, Gistri R, et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349:1027–35.

    Article  CAS  PubMed  Google Scholar 

  103. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830–40.

    Article  CAS  PubMed  Google Scholar 

  104. Sciagra R. Quantitative cardiac positron emission tomography: the time is coming! Scientifica. 2012;2012:948653.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Child N, Muhr T, Sammut E, et al. Prevalence of myocardial crypts in a large retrospective cohort study by cardiovascular magnetic resonance. J Cardiovasc Magnet Resonance : Off J Soc Cardiovasc Magnet Resonance. 2014;16:66.

    Article  Google Scholar 

  106. Erol C, Koplay M, Olcay A, et al. Congenital left ventricular wall abnormalities in adults detected by gated cardiac multidetector computed tomography: clefts, aneurysms, diverticula and terminology problems. Eur J Radiol 2012.

  107. Johansson B, Maceira AM, Babu-Narayan SV, et al. Clefts can be seen in the basal inferior wall of the left ventricle and the interventricular septum in healthy volunteers as well as patients by cardiovascular magnetic resonance. J Am Coll Cardiol. 2007;50:1294–5.

    Article  PubMed  Google Scholar 

  108. Petryka J, Baksi AJ, Prasad SK, et al. Prevalence of inferobasal myocardial crypts among patients referred for cardiovascular magnetic resonance. Circulat Cardiovasc Imag. 2014;7:259–64.

    Article  Google Scholar 

  109. Germans T, Wilde AA, Dijkmans PA, et al. Structural abnormalities of the inferoseptal left ventricular wall detected by cardiac magnetic resonance imaging in carriers of hypertrophic cardiomyopathy mutations. J Am Coll Cardiol. 2006;48:2518–23.

    Article  PubMed  Google Scholar 

  110. Brouwer WP, Germans T, Head MC, et al. Multiple myocardial crypts on modified long-axis view are a specific finding in pre-hypertrophic HCM mutation carriers. Europ Heart J Cardiovasc Imag. 2012;13:292–7.

    Article  Google Scholar 

  111. Maron MS, Rowin EJ, Lin D, et al. Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circulat Cardiovasc Imag 2012.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Raquel Sukhbir and Rabah Alreshq declare that they have no conflict of interest.

Nicholas Child is supported by unrelated educational grants from Medtronic and Saint Jude Medical.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Child.

Additional information

This article is part of the Topical Collection on Cardiac Magnetic Resonance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhbir, R., Alreshq, R. & Child, N. Imaging in Deciphering Histological Substrates in Hypertrophic Cardiomyopathy. Curr Cardiovasc Imaging Rep 8, 40 (2015). https://doi.org/10.1007/s12410-015-9355-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-015-9355-8

Keywords

Navigation