Skip to main content

Advertisement

Log in

Evaluation of Hypertrophic Cardiomyopathy: Newer Echo and MRI Approaches

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review discusses the basic and evolving echocardiographic and cardiac magnetic resonance (CMR) approaches in the diagnosis and management of patients with hypertrophic cardiomyopathy (HCM).

Recent Findings

Newer imaging technologies and techniques in both echocardiography and CMR have proved to add incremental value to our understanding of HCM. 3D reconstruction in echocardiography and CMR allows for more accurate morphological and volumetric assessment of the left ventricle. Echocardiographic and CMR-based left atrial assessment, including for its mechanical properties, has been shown to be correlated to outcomes and development of atrial fibrillation. Tissue characterization and scar burden quantification by late gadolinium enhancement on CMR has revolutionized our understanding of fibrotic processes in HCM and their contribution to disease severity and clinical outcomes.

Summary

Cardiac imaging plays a crucial role in HCM patients. Using echocardiography and CMR as complementary modalities allows for improved diagnostics, optimization of treatment, and better prognostication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation. 1995;92(4):785–9.

    Article  CAS  Google Scholar 

  2. Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivotto I, Maron MS. Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol. 2014;64(1):83–99. https://doi.org/10.1016/j.jacc.2014.05.003.

    Article  PubMed  Google Scholar 

  3. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–54. https://doi.org/10.1016/j.jacc.2015.01.019.

    Article  PubMed  Google Scholar 

  4. •• Maron BJ. Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med. 2018;379(7):655–68. https://doi.org/10.1056/NEJMra1710575 This is an important comprehensive review of HCM from an epidemiological, diagnostic, and therapeutic perspectives.

    Article  PubMed  Google Scholar 

  5. American College of Cardiology Foundation/American Heart Association Task Force on Practice G, American Association for Thoracic S, American Society of E, American Society of Nuclear C, Heart Failure Society of A, Heart Rhythm S et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg 2011;142(6):1303–1338. doi:https://doi.org/10.1016/j.jtcvs.2011.10.019.

    Article  Google Scholar 

  6. Authors/Task Force members, Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, et al. ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014. 2014;35(39):2733–79. https://doi.org/10.1093/eurheartj/ehu284.

    Article  Google Scholar 

  7. Nagueh SF, Bierig SM, Budoff MJ, Desai M, Dilsizian V, Eidem B, et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with hypertrophic cardiomyopathy: endorsed by the American Society of Nuclear Cardiology, Society for Cardiovascular Magnetic Resonance, and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. 2011;24(5):473–98. https://doi.org/10.1016/j.echo.2011.03.006.

    Article  PubMed  Google Scholar 

  8. •• Spirito P, Bellone P, Harris KM, Bernabo P, Bruzzi P, Maron BJ. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med. 2000;342(24):1778–85. https://doi.org/10.1056/NEJM200006153422403 This study showed a correlation between the severity of LV hypertrophy and risk of sudden death.

    Article  CAS  PubMed  Google Scholar 

  9. Olivotto I, Gistri R, Petrone P, Pedemonte E, Vargiu D, Cecchi F. Maximum left ventricular thickness and risk of sudden death in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003;41(2):315–21.

    Article  Google Scholar 

  10. •• Maron MS, Maron BJ, Harrigan C, Buros J, Gibson CM, Olivotto I, et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol. 2009;54(3):220–8. https://doi.org/10.1016/j.jacc.2009.05.006 This study emphasized the emerging role of CMR in characterizeing the diverse patterns of LV hypertrophy in HCM.

    Article  PubMed  Google Scholar 

  11. Rickers C, Wilke NM, Jerosch-Herold M, Casey SA, Panse P, Panse N, et al. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation. 2005;112(6):855–61. https://doi.org/10.1161/CIRCULATIONAHA.104.507723.

    Article  PubMed  Google Scholar 

  12. Moon JC, Fisher NG, McKenna WJ, Pennell DJ. Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart. 2004;90(6):645–9.

    Article  CAS  Google Scholar 

  13. Maron MS, Hauser TH, Dubrow E, Horst TA, Kissinger KV, Udelson JE, et al. Right ventricular involvement in hypertrophic cardiomyopathy. Am J Cardiol. 2007;100(8):1293–8. https://doi.org/10.1016/j.amjcard.2007.05.061.

    Article  PubMed  Google Scholar 

  14. Keeling AN, Carr JC, Choudhury L. Right ventricular hypertrophy and scarring in mutation positive hypertrophic cardiomyopathy. Eur Heart J. 2010;31(3):381. https://doi.org/10.1093/eurheartj/ehp528.

    Article  PubMed  Google Scholar 

  15. • Hindieh W, Weissler-Snir A, Hammer H, Adler A, Rakowski H, Chan RH. Discrepant measurements of maximal left ventricular wall thickness between cardiac magnetic resonance imaging and echocardiography in patients with hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2017;10(8). https://doi.org/10.1161/CIRCIMAGING.117.006309 This study highlights the discrepancy in maximal wall thickness between CMR and echocardiography.

  16. • Bois JP, Geske JB, Foley TA, Ommen SR, Pellikka PA. Comparison of maximal wall thickness in hypertrophic cardiomyopathy differs between magnetic resonance imaging and transthoracic echocardiography. Am J Cardiol. 2017;119(4):643–50. https://doi.org/10.1016/j.amjcard.2016.11.010 This study highlights the discrepancy in maximal wall thickness between CMR and echocardiography.

    Article  PubMed  Google Scholar 

  17. Pennell DJ. Ventricular volume and mass by CMR. J Cardiovasc Magn Reson. 2002;4(4):507–13.

    Article  Google Scholar 

  18. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, et al. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation. 2006;114(7):654–61. https://doi.org/10.1161/CIRCULATIONAHA.106.626143.

    Article  PubMed  Google Scholar 

  19. Olivotto I, Maron MS, Autore C, Lesser JR, Rega L, Casolo G, et al. Assessment and significance of left ventricular mass by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2008;52(7):559–66. https://doi.org/10.1016/j.jacc.2008.04.047.

    Article  PubMed  Google Scholar 

  20. Elliott PM, Gimeno Blanes JR, Mahon NG, Poloniecki JD, McKenna WJ. Relation between severity of left-ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy. Lancet. 2001;357(9254):420–4. https://doi.org/10.1016/S0140-6736(00)04005-8.

    Article  CAS  PubMed  Google Scholar 

  21. Maron MS, Finley JJ, Bos JM, Hauser TH, Manning WJ, Haas TS, et al. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation. 2008;118(15):1541–9. https://doi.org/10.1161/CIRCULATIONAHA.108.781401.

    Article  PubMed  Google Scholar 

  22. Rowin EJ, Maron BJ, Chokshi A, Maron MS. Left ventricular apical aneurysm in hypertrophic cardiomyopathy as a risk factor for sudden death at any age. Pacing Clin Electrophysiol. 2018;41:1031–3. https://doi.org/10.1111/pace.13413.

    Article  Google Scholar 

  23. •• Rowin EJ, Maron BJ, Haas TS, Garberich RF, Wang W, Link MS, et al. Hypertrophic cardiomyopathy with left ventricular apical aneurysm: implications for risk stratification and management. J Am Coll Cardiol. 2017;69(7):761–73. https://doi.org/10.1016/j.jacc.2016.11.063 This study shows a strong correlation between apical aneurysm in HCM and adverse outcomes.

    Article  PubMed  Google Scholar 

  24. Holloway CJ, Betts TR, Neubauer S, Myerson SG. Hypertrophic cardiomyopathy complicated by large apical aneurysm and thrombus, presenting as ventricular tachycardia. J Am Coll Cardiol. 2010;56(23):1961. https://doi.org/10.1016/j.jacc.2010.01.078.

    Article  PubMed  Google Scholar 

  25. Raza M, Chalfoun N, Wissam A, Hashmi H, McNamara R. Hypertrophic cardiomyopathy with a large apical ventricular aneurysm and mural thrombus. Glob Cardiol Sci Pract. 2018;2018(1):9. https://doi.org/10.21542/gcsp.2018.9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kalra A, Maron MS, Rowin EJ, Colgan TK, Lesser JR, Maron BJ. Coronary embolization in hypertrophic cardiomyopathy with left ventricular apical aneurysm. Am J Cardiol. 2015;115(9):1318–9. https://doi.org/10.1016/j.amjcard.2015.02.016.

    Article  PubMed  Google Scholar 

  27. Matsubara K, Nakamura T, Kuribayashi T, Azuma A, Nakagawa M. Sustained cavity obliteration and apical aneurysm formation in apical hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003;42(2):288–95.

    Article  Google Scholar 

  28. Fattori R, Biagini E, Lorenzini M, Buttazzi K, Lovato L, Rapezzi C. Significance of magnetic resonance imaging in apical hypertrophic cardiomyopathy. Am J Cardiol. 2010;105(11):1592–6. https://doi.org/10.1016/j.amjcard.2010.01.020.

    Article  PubMed  Google Scholar 

  29. Pons-Llado G, Carreras F, Borras X, Palmer J, Llauger J, Bayes de Luna A. Comparison of morphologic assessment of hypertrophic cardiomyopathy by magnetic resonance versus echocardiographic imaging. Am J Cardiol. 1997;79(12):1651–6.

    Article  CAS  Google Scholar 

  30. Eriksson MJ, Sonnenberg B, Woo A, Rakowski P, Parker TG, Wigle ED, et al. Long-term outcome in patients with apical hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;39(4):638–45.

    Article  Google Scholar 

  31. Mulvagh SL, Rakowski H, Vannan MA, Abdelmoneim SS, Becher H, Bierig SM, et al. American Society of Echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr. 2008;21(11):1179–201; quiz 281. https://doi.org/10.1016/j.echo.2008.09.009.

    Article  PubMed  Google Scholar 

  32. Hughes SE. The pathology of hypertrophic cardiomyopathy. Histopathology. 2004;44(5):412–27. https://doi.org/10.1111/j.1365-2559.2004.01835.x.

    Article  CAS  PubMed  Google Scholar 

  33. Mozaffarian D, Caldwell JH. Right ventricular involvement in hypertrophic cardiomyopathy: a case report and literature review. Clin Cardiol. 2001;24(1):2–8.

    Article  CAS  Google Scholar 

  34. Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43(12):2260–4. https://doi.org/10.1016/j.jacc.2004.03.035.

    Article  PubMed  Google Scholar 

  35. • Moravsky G, Ofek E, Rakowski H, Butany J, Williams L, Ralph-Edwards A, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR. JACC Cardiovasc Imaging. 2013;6(5):587–96. https://doi.org/10.1016/j.jcmg.2012.09.018 This study shows the correlation between LGE quantification and histopathological findings in CMR.

    Article  PubMed  Google Scholar 

  36. Kim RJ, Judd RM. Gadolinium-enhanced magnetic resonance imaging in hypertrophic cardiomyopathy: in vivo imaging of the pathologic substrate for premature cardiac death? J Am Coll Cardiol. 2003;41(9):1568–72.

    Article  Google Scholar 

  37. Kwon DH, Smedira NG, Rodriguez ER, Tan C, Setser R, Thamilarasan M, et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol. 2009;54(3):242–9. https://doi.org/10.1016/j.jacc.2009.04.026.

    Article  PubMed  Google Scholar 

  38. Papavassiliu T, Schnabel P, Schroder M, Borggrefe M. CMR scarring in a patient with hypertrophic cardiomyopathy correlates well with histological findings of fibrosis. Eur Heart J. 2005;26(22):2395. https://doi.org/10.1093/eurheartj/ehi518.

    Article  PubMed  Google Scholar 

  39. Cardim N, Galderisi M, Edvardsen T, Plein S, Popescu BA, D'Andrea A, et al. Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association. Eur Heart J Cardiovasc Imaging. 2015;16(3):280. https://doi.org/10.1093/ehjci/jeu291.

    Article  PubMed  Google Scholar 

  40. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.

    Article  CAS  Google Scholar 

  41. Maron MS. Contrast-enhanced CMR in HCM: what lies behind the bright light of LGE and why it now matters. JACC Cardiovasc Imaging. 2013;6(5):597–9. https://doi.org/10.1016/j.jcmg.2012.10.028.

    Article  PubMed  Google Scholar 

  42. Rudolph A, Abdel-Aty H, Bohl S, Boye P, Zagrosek A, Dietz R, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol. 2009;53(3):284–91. https://doi.org/10.1016/j.jacc.2008.08.064.

    Article  PubMed  Google Scholar 

  43. •• Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130(6):484–95. https://doi.org/10.1161/CIRCULATIONAHA.113.007094 This study examined LGE in 1293 HCM patients and showed a linear correlation between risk of sudden cardiac death and amount of LGE, even after adjustment for other disease variables.

    Article  PubMed  Google Scholar 

  44. O'Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):867–74. https://doi.org/10.1016/j.jacc.2010.05.010.

    Article  PubMed  Google Scholar 

  45. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):875–87. https://doi.org/10.1016/j.jacc.2010.05.007.

    Article  PubMed  Google Scholar 

  46. Neilan TG, Farhad H, Mayrhofer T, Shah RV, Dodson JA, Abbasi SA, et al. Late gadolinium enhancement among survivors of sudden cardiac arrest. JACC Cardiovasc Imaging. 2015;8(4):414–23. https://doi.org/10.1016/j.jcmg.2014.11.017.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Green JJ, Berger JS, Kramer CM, Salerno M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging. 2012;5(4):370–7. https://doi.org/10.1016/j.jcmg.2011.11.021.

    Article  PubMed  Google Scholar 

  48. •• Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y, et al. Prognostic value of LGE-CMR in HCM: a meta-analysis. JACC Cardiovasc Imaging. 2016;9(12):1392–402. https://doi.org/10.1016/j.jcmg.2016.02.031 This meta-analysis consisted of seven study, involving 2993 HCM patients, and showed the prognostic value of LGE in SCD prediction.

    Article  PubMed  Google Scholar 

  49. Ismail TF, Jabbour A, Gulati A, Mallorie A, Raza S, Cowling TE, et al. Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart. 2014;100(23):1851–8. https://doi.org/10.1136/heartjnl-2013-305471.

    Article  PubMed  Google Scholar 

  50. Ismail TF, Prasad SK, Pennell DJ. Prognostic importance of late gadolinium enhancement cardiovascular magnetic resonance in cardiomyopathy. Heart. 2012;98(6):438–42. https://doi.org/10.1136/heartjnl-2011-300814.

    Article  PubMed  Google Scholar 

  51. •• Mentias A, Raeisi-Giglou P, Smedira NG, Feng K, Sato K, Wazni O, et al. Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol. 2018;72(8):857–70. https://doi.org/10.1016/j.jacc.2018.05.060 This study shows the incremental prognostic utility of LGE extent in low to intermediate-risk HCM patients.

    Article  PubMed  Google Scholar 

  52. Kwon DH, Setser RM, Popovic ZB, Thamilarasan M, Sola S, Schoenhagen P, et al. Association of myocardial fibrosis, electrocardiography and ventricular tachyarrhythmia in hypertrophic cardiomyopathy: a delayed contrast enhanced MRI study. Int J Cardiovasc Imaging. 2008;24(6):617–25. https://doi.org/10.1007/s10554-008-9292-6.

    Article  PubMed  Google Scholar 

  53. Fluechter S, Kuschyk J, Wolpert C, Doesch C, Veltmann C, Haghi D, et al. Extent of late gadolinium enhancement detected by cardiovascular magnetic resonance correlates with the inducibility of ventricular tachyarrhythmia in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2010;12:30. https://doi.org/10.1186/1532-429X-12-30.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51(14):1369–74. https://doi.org/10.1016/j.jacc.2007.11.071.

    Article  PubMed  Google Scholar 

  55. Appelbaum E, Maron BJ, Adabag S, Hauser TH, Lesser JR, Haas TS, et al. Intermediate-signal-intensity late gadolinium enhancement predicts ventricular tachyarrhythmias in patients with hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(1):78–85. https://doi.org/10.1161/CIRCIMAGING.111.963819.

    Article  PubMed  Google Scholar 

  56. •• Mc LA, Ellims AH, Prabhu S, Voskoboinik A, Iles LM, Hare JL, et al. Diffuse ventricular fibrosis on cardiac magnetic resonance imaging associates with ventricular tachycardia in patients with hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2016;27(5):571–80. https://doi.org/10.1111/jce.12948 This study shows an association between LGE and T1-mapping for LGE extent and ventricular arrhythmia burden in HCM.

    Article  Google Scholar 

  57. Rubinshtein R, Glockner JF, Ommen SR, Araoz PA, Ackerman MJ, Sorajja P, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3(1):51–8. https://doi.org/10.1161/CIRCHEARTFAILURE.109.854026.

    Article  PubMed  Google Scholar 

  58. Weissler-Snir A, Hindieh W, Spears DA, Adler A, Rakowski H, Chan RH. The relationship between the quantitative extent of late gadolinium enhancement and burden of nonsustained ventricular tachycardia in hypertrophic cardiomyopathy: a delayed contrast-enhanced magnetic resonance study. J Cardiovasc Electrophysiol. 2019;30:651–7. https://doi.org/10.1111/jce.13855.

    Article  PubMed  Google Scholar 

  59. •• O'Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J. 2014;35(30):2010–20. https://doi.org/10.1093/eurheartj/eht439 This study led to the development of a novel sudden cardiac death risk calculator which has been encorporated in the ESC guidelines.

    Article  PubMed  Google Scholar 

  60. Swoboda PP, McDiarmid AK, Erhayiem B, Broadbent DA, Dobson LE, Garg P, et al. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete’s heart. J Am Coll Cardiol. 2016;67(18):2189–90. https://doi.org/10.1016/j.jacc.2016.02.054.

    Article  PubMed  Google Scholar 

  61. Hinojar R, Varma N, Child N, Goodman B, Jabbour A, Yu CY, et al. T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. Circ Cardiovasc Imaging. 2015;8(12). https://doi.org/10.1161/CIRCIMAGING.115.003285.

  62. Nam BD, Kim SM, Jung HN, Kim Y, Choe YH. Comparison of quantitative imaging parameters using cardiovascular magnetic resonance between cardiac amyloidosis and hypertrophic cardiomyopathy: inversion time scout versus T1 mapping. Int J Cardiovasc Imaging. 2018;34(11):1769–77. https://doi.org/10.1007/s10554-018-1385-2.

    Article  PubMed  Google Scholar 

  63. Karur GR, Robison S, Iwanochko RM, Morel CF, Crean AM, Thavendiranathan P, et al. Use of myocardial T1 mapping at 3.0 T to differentiate Anderson-Fabry disease from hypertrophic cardiomyopathy. Radiology. 2018;288(2):398–406. https://doi.org/10.1148/radiol.2018172613.

    Article  PubMed  Google Scholar 

  64. Klues HG, Maron BJ, Dollar AL, Roberts WC. Diversity of structural mitral valve alterations in hypertrophic cardiomyopathy. Circulation. 1992;85(5):1651–60.

    Article  CAS  Google Scholar 

  65. • Maron MS, Olivotto I, Harrigan C, Appelbaum E, Gibson CM, Lesser JR, et al. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation. 2011;124(1):40–7. https://doi.org/10.1161/CIRCULATIONAHA.110.985812 This study shows the CMR-based various mitral valve morphologies and abnormalities in HCM patients.

    Article  CAS  PubMed  Google Scholar 

  66. Uretsky S, Gillam L, Lang R, Chaudhry FA, Argulian E, Supariwala A, et al. Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol. 2015;65(11):1078–88. https://doi.org/10.1016/j.jacc.2014.12.047.

    Article  PubMed  Google Scholar 

  67. Patel P, Dhillon A, Popovic ZB, Smedira NG, Rizzo J, Thamilarasan M, et al. Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy patients without severe septal hypertrophy: implications of mitral valve and papillary muscle abnormalities assessed using cardiac magnetic resonance and echocardiography. Circ Cardiovasc Imaging. 2015;8(7):e003132. https://doi.org/10.1161/CIRCIMAGING.115.003132.

    Article  PubMed  Google Scholar 

  68. Kwon DH, Smedira NG, Thamilarasan M, Lytle BW, Lever H, Desai MY. Characteristics and surgical outcomes of symptomatic patients with hypertrophic cardiomyopathy with abnormal papillary muscle morphology undergoing papillary muscle reorientation. J Thorac Cardiovasc Surg. 2010;140(2):317–24. https://doi.org/10.1016/j.jtcvs.2009.10.045.

    Article  PubMed  Google Scholar 

  69. Olivotto I, Cecchi F, Casey SA, Dolara A, Traverse JH, Maron BJ. Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy. Circulation. 2001;104(21):2517–24.

    Article  CAS  Google Scholar 

  70. Guttmann OP, Rahman MS, O'Mahony C, Anastasakis A, Elliott PM. Atrial fibrillation and thromboembolism in patients with hypertrophic cardiomyopathy: systematic review. Heart. 2014;100(6):465–72. https://doi.org/10.1136/heartjnl-2013-304276.

    Article  PubMed  Google Scholar 

  71. • Rowin EJ, Hausvater A, Link MS, Abt P, Gionfriddo W, Wang W, et al. Clinical profile and consequences of atrial fibrillation in hypertrophic cardiomyopathy. Circulation. 2017;136(25):2420–36. https://doi.org/10.1161/CIRCULATIONAHA.117.029267 This study shows the prevalence and clinical importnace of atrial fibrillation in patietns with HCM, associated with a low disease-related mortality.

    Article  PubMed  Google Scholar 

  72. • Siontis KC, Geske JB, Ong K, Nishimura RA, Ommen SR, Gersh BJ. Atrial fibrillation in hypertrophic cardiomyopathy: prevalence, clinical correlations, and mortality in a large high-risk population. J Am Heart Assoc. 2014;3(3):e001002. https://doi.org/10.1161/JAHA.114.001002 This study showed that atrial fibrillation is a strong predictor of mortality, even after adjustment to other risk facotrs.

    Article  PubMed  PubMed Central  Google Scholar 

  73. • Maron BJ, Haas TS, Maron MS, Lesser JR, Browning JA, Chan RH, et al. Left atrial remodeling in hypertrophic cardiomyopathy and susceptibility markers for atrial fibrillation identified by cardiovascular magnetic resonance. Am J Cardiol. 2014;113(8):1394–400. https://doi.org/10.1016/j.amjcard.2013.12.045 This study assessed the left atrial function, morphology, and mechanics by CMR, and correlated this to atrial fibrillation development.

    Article  PubMed  Google Scholar 

  74. Kim KJ, Choi HM, Yoon YE, Kim HL, Lee SP, Kim HK, et al. Left atrial mechanical function and global strain in hypertrophic cardiomyopathy. PLoS One. 2016;11(6):e0157433. https://doi.org/10.1371/journal.pone.0157433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vasquez N, Ostrander BT, Lu DY, Ventoulis I, Haileselassie B, Goyal S, et al. Low left atrial strain is associated with adverse outcomes in hypertrophic cardiomyopathy patients. J Am Soc Echocardiogr. 2019;32:593–603.e1. https://doi.org/10.1016/j.echo.2019.01.007.

    Article  PubMed  Google Scholar 

  76. Debonnaire P, Joyce E, Hiemstra Y, Mertens BJ, Atsma DE, Schalij MJ, et al. Left atrial size and function in hypertrophic cardiomyopathy patients and risk of new-onset atrial fibrillation. Circ Arrhythm Electrophysiol. 2017;10(2). https://doi.org/10.1161/CIRCEP.116.004052.

  77. Yang WI, Shim CY, Kim YJ, Kim SA, Rhee SJ, Choi EY, et al. Left atrial volume index: a predictor of adverse outcome in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2009;22(12):1338–43. https://doi.org/10.1016/j.echo.2009.09.016.

    Article  PubMed  Google Scholar 

  78. Tani T, Yagi T, Kitai T, Kim K, Nakamura H, Konda T, et al. Left atrial volume predicts adverse cardiac and cerebrovascular events in patients with hypertrophic cardiomyopathy. Cardiovasc Ultrasound. 2011;9:34. https://doi.org/10.1186/1476-7120-9-34.

    Article  PubMed  PubMed Central  Google Scholar 

  79. • Hiemstra YL, Debonnaire P, Bootsma M, van Zwet EW, Delgado V, Schalij MJ, et al. Global longitudinal strain and left atrial volume index provide incremental prognostic value in patients with hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2017;10(7). https://doi.org/10.1161/CIRCIMAGING.116.005706 This study shows that reduced LV strain, as well as large LA volumes are associated with adverse evets in HCM patients.

  80. Yang H, Woo A, Monakier D, Jamorski M, Fedwick K, Wigle ED, et al. Enlarged left atrial volume in hypertrophic cardiomyopathy: a marker for disease severity. J Am Soc Echocardiogr. 2005;18(10):1074–82. https://doi.org/10.1016/j.echo.2005.06.011.

    Article  PubMed  Google Scholar 

  81. Maceira AM, Cosin-Sales J, Roughton M, Prasad SK, Pennell DJ. Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:65. https://doi.org/10.1186/1532-429X-12-65.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rosca M, Popescu BA, Beladan CC, Calin A, Muraru D, Popa EC, et al. Left atrial dysfunction as a correlate of heart failure symptoms in hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2010;23(10):1090–8. https://doi.org/10.1016/j.echo.2010.07.016.

    Article  PubMed  Google Scholar 

  83. Paraskevaidis IA, Panou F, Papadopoulos C, Farmakis D, Parissis J, Ikonomidis I, et al. Evaluation of left atrial longitudinal function in patients with hypertrophic cardiomyopathy: a tissue Doppler imaging and two-dimensional strain study. Heart. 2009;95(6):483–9. https://doi.org/10.1136/hrt.2008.146548.

    Article  CAS  PubMed  Google Scholar 

  84. Fujimoto K, Inoue K, Saito M, Higashi H, Kono T, Uetani T, et al. Incremental value of left atrial active function measured by speckle tracking echocardiography in patients with hypertrophic cardiomyopathy. Echocardiography. 2018;35(8):1138–48. https://doi.org/10.1111/echo.13886.

    Article  PubMed  Google Scholar 

  85. Hinojar R, Zamorano JL, Fernandez-Mendez M, Esteban A, Plaza-Martin M, Gonzalez-Gomez A, et al. Prognostic value of left atrial function by cardiovascular magnetic resonance feature tracking in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2019;35:1055–65. https://doi.org/10.1007/s10554-019-01534-8.

    Article  PubMed  Google Scholar 

  86. Sivalokanathan S, Zghaib T, Greenland GV, Vasquez N, Kudchadkar SM, Kontari E, et al. Hypertrophic cardiomyopathy patients with paroxysmal atrial fibrillation have a high burden of left atrial fibrosis by cardiac magnetic resonance imaging. JACC Clin Electrophysiol. 2019;5(3):364–75. https://doi.org/10.1016/j.jacep.2018.10.016.

    Article  PubMed  Google Scholar 

  87. Harris KM, Spirito P, Maron MS, Zenovich AG, Formisano F, Lesser JR, et al. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation. 2006;114(3):216–25. https://doi.org/10.1161/CIRCULATIONAHA.105.583500.

    Article  PubMed  Google Scholar 

  88. Maciver DH. A new method for quantification of left ventricular systolic function using a corrected ejection fraction. Eur J Echocardiogr. 2011;12(3):228–34. https://doi.org/10.1093/ejechocard/jeq185.

    Article  PubMed  Google Scholar 

  89. Cardim N, Longo S, Ferreira T, Pereira A, Gouveia A, Reis RP, et al. Tissue Doppler imaging assessment of long axis left ventricular function in hypertensive patients with concentric left ventricular hypertrophy: differential diagnosis with hypertrophic cardiomyopathy. Rev Port Cardiol. 2002;21(6):709–40.

    PubMed  Google Scholar 

  90. Oki T, Mishiro Y, Yamada H, Onose Y, Matsuoka M, Wakatsuki T, et al. Detection of left ventricular regional relaxation abnormalities and asynchrony in patients with hypertrophic cardiomyopathy with the use of tissue Doppler imaging. Am Heart J. 2000;139(3):497–502.

    Article  CAS  Google Scholar 

  91. Bayrak F, Kahveci G, Mutlu B, Sonmez K, Degertekin M. Tissue Doppler imaging to predict clinical course of patients with hypertrophic cardiomyopathy. Eur J Echocardiogr. 2008;9(2):278–83. https://doi.org/10.1093/ejechocard/jen049.

    Article  PubMed  Google Scholar 

  92. Popovic ZB, Kwon DH, Mishra M, Buakhamsri A, Greenberg NL, Thamilarasan M, et al. Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J Am Soc Echocardiogr. 2008;21(12):1299–305. https://doi.org/10.1016/j.echo.2008.09.011.

    Article  PubMed  Google Scholar 

  93. Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E, et al. Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2016;17(6):613–21. https://doi.org/10.1093/ehjci/jew005.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rossvoll O, Hatle LK. Pulmonary venous flow velocities recorded by transthoracic Doppler ultrasound: relation to left ventricular diastolic pressures. J Am Coll Cardiol. 1993;21(7):1687–96.

    Article  CAS  Google Scholar 

  95. Appleton CP, Galloway JM, Gonzalez MS, Gaballa M, Basnight MA. Estimation of left ventricular filling pressures using two-dimensional and Doppler echocardiography in adult patients with cardiac disease. Additional value of analyzing left atrial size, left atrial ejection fraction and the difference in duration of pulmonary venous and mitral flow velocity at atrial contraction. J Am Coll Cardiol. 1993;22(7):1972–82.

    Article  CAS  Google Scholar 

  96. Vanoverschelde JL, Robert AR, Gerbaux A, Michel X, Hanet C, Wijns W. Noninvasive estimation of pulmonary arterial wedge pressure with Doppler transmitral flow velocity pattern in patients with known heart disease. Am J Cardiol. 1995;75(5):383–9.

    Article  CAS  Google Scholar 

  97. Pozzoli M, Capomolla S, Pinna G, Cobelli F, Tavazzi L. Doppler echocardiography reliably predicts pulmonary artery wedge pressure in patients with chronic heart failure with and without mitral regurgitation. J Am Coll Cardiol. 1996;27(4):883–93.

    Article  CAS  Google Scholar 

  98. Nishimura RA, Appleton CP, Redfield MM, Ilstrup DM, Holmes DR Jr, Tajik AJ. Noninvasive doppler echocardiographic evaluation of left ventricular filling pressures in patients with cardiomyopathies: a simultaneous Doppler echocardiographic and cardiac catheterization study. J Am Coll Cardiol. 1996;28(5):1226–33. https://doi.org/10.1016/S0735-1097(96)00315-4.

    Article  CAS  PubMed  Google Scholar 

  99. Nagueh SF, Lakkis NM, Middleton KJ, Spencer WH 3rd, Zoghbi WA, Quinones MA. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation. 1999;99(2):254–61.

    Article  CAS  Google Scholar 

  100. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314. https://doi.org/10.1016/j.echo.2016.01.011.

    Article  PubMed  Google Scholar 

  101. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321–60. https://doi.org/10.1093/ehjci/jew082.

    Article  PubMed  Google Scholar 

  102. Geske JB, Sorajja P, Nishimura RA, Ommen SR. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation. 2007;116(23):2702–8. https://doi.org/10.1161/CIRCULATIONAHA.107.698985.

    Article  PubMed  Google Scholar 

  103. Aquaro GD, Pizzino F, Terrizzi A, Carerj S, Khandheria BK, Di Bella G. Diastolic dysfunction evaluated by cardiac magnetic resonance: the value of the combined assessment of atrial and ventricular function. Eur Radiol. 2019;29(3):1555–64. https://doi.org/10.1007/s00330-018-5571-3.

    Article  PubMed  Google Scholar 

  104. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003;348(4):295–303. https://doi.org/10.1056/NEJMoa021332.

    Article  PubMed  Google Scholar 

  105. Sherrid MV, Gunsburg DZ, Moldenhauer S, Pearle G. Systolic anterior motion begins at low left ventricular outflow tract velocity in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2000;36(4):1344–54.

    Article  CAS  Google Scholar 

  106. Carasso S, Woo A, Yang H, Schwartz L, Vannan MA, Jamorski M, et al. Myocardial mechanics explains the time course of benefit for septal ethanol ablation for hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2008;21(5):493–9. https://doi.org/10.1016/j.echo.2007.08.020.

    Article  PubMed  Google Scholar 

  107. Millat G, Bouvagnet P, Chevalier P, Dauphin C, Jouk PS, Da Costa A, et al. Prevalence and spectrum of mutations in a cohort of 192 unrelated patients with hypertrophic cardiomyopathy. Eur J Med Genet. 2010;53(5):261–7. https://doi.org/10.1016/j.ejmg.2010.07.007.

    Article  PubMed  Google Scholar 

  108. Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. 2015;17(11):880–8. https://doi.org/10.1038/gim.2014.205.

    Article  PubMed  Google Scholar 

  109. Golbus JR, Puckelwartz MJ, Fahrenbach JP, Dellefave-Castillo LM, Wolfgeher D, McNally EM. Population-based variation in cardiomyopathy genes. Circ Cardiovasc Genet. 2012;5(4):391–9. https://doi.org/10.1161/CIRCGENETICS.112.962928.

    Article  PubMed  PubMed Central  Google Scholar 

  110. • Gruner C, Chan RH, Crean A, Rakowski H, Rowin EJ, Care M, et al. Significance of left ventricular apical-basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Eur Heart J. 2014;35(39):2706–13. https://doi.org/10.1093/eurheartj/ehu154 This study highlights the role of CMR in identifying apical-septal bundles as a part of HCM phenotype.

    Article  PubMed  Google Scholar 

  111. • Maron MS, Rowin EJ, Lin D, Appelbaum E, Chan RH, Gibson CM, et al. Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(4):441–7. https://doi.org/10.1161/CIRCIMAGING.112.972760 This study highlights the role of CMR in identifying myocardial crypts as a part of HCM phenotype.

    Article  PubMed  Google Scholar 

  112. Caselli S, Maron MS, Urbano-Moral JA, Pandian NG, Maron BJ, Pelliccia A. Differentiating left ventricular hypertrophy in athletes from that in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2014;114(9):1383–9. https://doi.org/10.1016/j.amjcard.2014.07.070.

    Article  PubMed  Google Scholar 

  113. Deva DP, Hanneman K, Li Q, Ng MY, Wasim S, Morel C, et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease. J Cardiovasc Magn Reson. 2016;18:14. https://doi.org/10.1186/s12968-016-0233-6.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Falk RH, Quarta CC, Dorbala S. How to image cardiac amyloidosis. Circ Cardiovasc Imaging. 2014;7(3):552–62. https://doi.org/10.1161/CIRCIMAGING.113.001396.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Rakowski.

Ethics declarations

Conflict of Interest

Manhal Habib, Sara Hoss, and Harry Rakowski declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, M., Hoss, S. & Rakowski, H. Evaluation of Hypertrophic Cardiomyopathy: Newer Echo and MRI Approaches. Curr Cardiol Rep 21, 75 (2019). https://doi.org/10.1007/s11886-019-1173-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1173-1

Keywords

Navigation