Skip to main content
Log in

Microbial consortia including methanotrophs: some benefits of living together

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

With the progress of biotechnological research and improvements made in bioprocessing with pure cultures, microbial consortia have gained recognition for accomplishing biological processes with improved effectiveness. Microbes are indispensable tool in developing bioprocesses for the production of bioenergy and biochemicals while utilizing renewable resources due to technical, economic and environmental advantages. They communicate with specific cohorts in close proximity to promote metabolic cooperation. Use of positive microbial associations has been recognized widely, especially in food industries and bioremediation of toxic compounds and waste materials. Role of microbial associations in developing sustainable energy sources and substitutes for conventional fuels is highly promising with many commercial prospects. Detoxification of chemical contaminants sourced from domestic, agricultural and industrial wastes has also been achieved through microbial catalysis in pure and co-culture systems. Methanotrophs, the sole biological sink of greenhouse gas methane, catalyze the methane monooxygenasemediated oxidation of methane to methanol, a high energy density liquid and key platform chemical to produce commodity chemical compounds and their derivatives. Constructed microbial consortia have positive effects, such as improved biomass, biocatalytic potential, stability etc. In a methanotroph-heterotroph consortium, non-methanotrophs provide key nutrient factors and alleviate the toxicity from the culture. Non-methanotrophic organisms biologically stimulate the growth and activity of methanotrophs via production of growth stimulators. However, methanotrophs in association with co-cultured microorganisms are in need of further exploration and thorough investigation to study their interaction mode and application with improved effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrete-Tapia, J.A., Miranda-Castilleja, D.E., Arvizu-Medrano, S.M., Martínez-Peniche, R.A., Soto-Muñoz, L., and Hernández-Iturriaga, M. 2018. Pursuing the perfect performer of fermented beverages: GMMs vs. Microbial Consortium. DOI: https://doi.org/10.5772/intechopen.81616.

    Google Scholar 

  • Alexander, M. 1999. Biodegradation and bioremediation, 2nd edn. p. 350. Academic Press, San Diego, USA.

    Google Scholar 

  • Anthony, C. 1986. Bacterial oxidation of methane and methanol. Adv. Microbial. Physiol. 27, 113–210.

    Article  CAS  Google Scholar 

  • AlSayed, A., Fergala, A., Khattab, S., ElSharkawy, A., and Eldyasti, A. 2018. Optimization of methane bio-hydroxylation using waste activated sludge mixed culture of type I methanotrophs as biocatalyst. Appl. Energy 211, 755–763.

    Article  CAS  Google Scholar 

  • Anderson, J.E. and McCarty, P.L. 1997. Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase. Appl. Environ. Microbiol. 63, 687–693.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angelis, S., Novak, A.C., Sydney, E.B., Soccol, V.T., Carvalho, J.C., Pandey, A., Noseda, M.D., Tholozan, J.L., Lorquin, J., and Soccol, C.R. 2012. Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: process preliminary optimization and partial characterization. Appl. Biochem. Biotechnol. 167, 1092–1106.

    Article  CAS  PubMed  Google Scholar 

  • Asenjo, J.A. and Suk, J.S. 1986. Microbial conversion of methane into polyb-hydroxybutyrate (PHB): growth and intracellular product accumulation in a type II methanotroph. J. Ferment. Technol. 64, 271–278.

    Article  CAS  Google Scholar 

  • Baldrian, P. 2004. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol. Ecol. 50, 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Benner. J., De Smet, D., Ho, A., Kerckhof, F.M., Vanhaecke, L., Heylen, K., and Boon, N. 2015. Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants. Appl. Microbiol. Biotechnol. 99, 3609–3618.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia, S.K., Bhatia, R.K., Choi, Y.K., Kan, E., Kim, Y.G., and Yang, Y.H. 2018a. Biotechnological potential of microbial consortia and future perspectives. Crit. Rev. Biotechnol. 38, 1209–1229.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia, S.K., Yoon, J.J., Kim, H.J., Hong, J.W., Hong, Y.G., Song, H.S., Moon, Y.M., Jeon, J.M., Kim, Y.G., and Yang, Y.H. 2018b. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresour. Technol. 257, 92–101.

    Article  CAS  PubMed  Google Scholar 

  • Biswas, J., Chowdhury, R., and Bhattacharya, P. 2006. Kinetic studies of biogas generation using municipal waste as feed stock. Enzyme Microb. Technol. 38, 493–503.

    Article  CAS  Google Scholar 

  • Bizukojc, M., Dietz, D., Sun, J., and Zeng, A.P. 2010. Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions. Bioprocess Biosyst. Eng. 33, 507–523.

    Article  CAS  PubMed  Google Scholar 

  • Bjorck, C.E., Dobson, P.D., and Pandhal, J. 2018. Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS Bioeng. 5, 1–38.

    Article  CAS  Google Scholar 

  • Bothe, H., Jensen, K.M., Mergel, A., Larsen, J., Jorgensen, C., Bothe, H., and Jorgensen, L. 2002. Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Appl. Microbiol. Biotechnol. 59, 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Brussow, H. 2001. Phages of dairy bacteria. Annu. Rev. Microbiol. 55, 283–303.

    Article  CAS  PubMed  Google Scholar 

  • Buzzini, P. 2001. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup. J. Appl. Microbiol. 90, 843–847.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Y., Mu, H., Liu, W., Zhang, R., Guo, J., Xian, M., and Liu, H. 2019. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb. Cell Fact. 18, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantera, S., Muñoz, R., Lebrero, R., López, J.C., Rodríguez, Y., and García-Encina, P.A. 2018. Technologies for the bioconversion of methane into more valuable products. Curr. Opin. Biotechnol. 50, 128–135.

    Article  CAS  PubMed  Google Scholar 

  • Chang, H.L. and Alvarez-Cohen, L. 1997. Two-stage methanotrophic bioreactor for the treatment of chlorinated organic wastewater. Water Res. 31, 2026–2036.

    Article  CAS  Google Scholar 

  • Chang, W.K. and Criddle, C.S. 1995. Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1. Biodegradation 6, 1–9.

    Article  CAS  Google Scholar 

  • Cheirsilp, B., Shoji, H., Shimizu, H., and Shioya, S. 2003. Interaction between Lactobacillus kefiranofaciens and Saccharomyces cerevisiae in mixed culture for kefiran production. J. Biosci. Bioeng. 96, 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Hao, S., Qu, J., Ma, J., and Zhao, S. 2015. Enhanced biodegradation of polychlorinated biphenyls by defined bacteria-yeast consortium. Ann. Microbiol. 65, 1847–1854.

    Article  CAS  Google Scholar 

  • Chidambarampadmavathy, K., Karthikeyan, O.P., and Heimann, K. 2015. Biopolymers made from methane in bioreactors. Eng. Life Sci. 15, 689–699.

    Article  CAS  Google Scholar 

  • Dong, J., Xin, J.Y., Zhang, Y.X., Chen, L.L., Liang, H.Y., and Xia, C.G. 2011. Growth of a methane utilizing mixed culture HD6T on methanol and poly-β-hydroxybutyrate biosynthesis. Adv. Mater. Res. 160–162, 171–175.

    Article  CAS  Google Scholar 

  • Driessen, F.M. 1981. Protocooperation of yogurt bacteria in continuous culture, pp. 99–120, In Bushell, M.E. and Slater, J.H. (eds.), Mixed Culture Fermentations. Academic Press, London, UK.

    Google Scholar 

  • Duarte, W.F., de Sousa, M.V., Dias, D.R., and Schwan, R.F. 2011. Effect of co-inoculation of Saccharomyces cerevisiae and Lactobacillus fermentum on the quality of the distilled sugar cane beverage cachaça. J Food Sci. 76, 1307–1318.

    Article  CAS  Google Scholar 

  • Dwidar, M., Kim, S., Jeon, B.S., Um, Y., Mitchell, R.J., and Sang, B.I. 2013. Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose. Biotechnol. Biofuels 6, 1754–6834.

    Article  CAS  Google Scholar 

  • Energias Market Research. 2018. https://www.globenewswire.com/news-release/2018/07/11/1535796/0/en/Global-Biopolymers-Market-to-witness-a-CAGR-of-15-2-during-2018-2024-Energias-Market-Research-Pvt-Ltd.html (Accessed on 08 June, 2019).

  • Fergala, A., AlSayed, A., Khattab, S., Ramirez, N., and Eldyasti, A. 2018. Development of methane-utilizing mixed cultures for the production of polyhydroxyalkanoates (PHAs) from anaerobic digester sludge. Environ. Sci. Technol. 52, 12376–12387.

    Article  CAS  PubMed  Google Scholar 

  • Fernández de Dios, M.A., del Campo, A.G., Fernández, F.J., Rodrigo, M., Pazos, M., and Sanromán, M.A. 2013. Bacterial-fungal interactions enhance power generation in microbial fuel cells and drive dye decolourisation by an ex situ and in situ electro-Fenton process. Bioresour. Technol. 148, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Forrester, S.B., Han, J.I., Dybas, M.J., Semrau, J.D., and Lastoskie, C.M. 2005. Characterization of a mixed methanotrophic culture capable of chloroethylene degradation. Environ. Eng. Sci. 22, 177–186.

    Article  CAS  Google Scholar 

  • García, C., Rendueles, M., and Díaz, M. 2017. Microbial amensalism in Lactobacillus casei and Pseudomonas taetrolens mixed culture. Bioprocess Biosyst. Eng. 40, 1111.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S., Chowdhury, R., and Bhattacharya, P. 2016. Mixed consortia in bioprocesses: role of microbial interactions. Appl. Microbiol. Biotechnol. 100, 4283–4295.

    Article  CAS  PubMed  Google Scholar 

  • Gobbetti, M. and Corsetti, A. 1997. Lactobacillus sanfranciscoa key sourdough lactic acid bacterium: a review. Food Microbiol. 14, 175–187.

    Article  CAS  Google Scholar 

  • Global Enzymes Market. 2018. PRNewswire (accessed on 30.05.2019) https://www.prnewswire.com/news-releases/global-enzymes-market-expected-to-reach-10-519-million-by-2024-898959866.html

    Google Scholar 

  • Global Methanol Market. 2019. https://www.reuters.com/brandfeatures/venture-capital/article?id=85404 (Accessed on 2019.05.01)

  • Gutierrez-Rivera, B., Ortiz-Muniz, B., Gomez-Rodriguez, J., Cardenas-Cagal, A., Gonzalez, J.M.D., and Aguilar-Uscanga, M.G. 2015. Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renew. Energ. 74, 399–405.

    Article  CAS  Google Scholar 

  • Han, J.S., Ahn, C.M., Mahanty, B., and Kim, C.G. 2013. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl. Biochem. Biotechnol. 171, 1487–1499.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, R.S. and Hanson, T.E. 1996. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han, B., Su, T., Wu, H., Gou, Z., Xing, X.H., Jiang, H., Chen, Y., Li, X., and Murrell, J.C. 2009. Paraffin oil as a “methane vector” for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 83, 669–677.

    Article  CAS  PubMed  Google Scholar 

  • Haynes, C.A. and Gonzalez, R. 2014. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10, 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Helm, J., Wendlandt, K.D., Rogge, G., and Kappelmeyer, U. 2006. Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J. Appl. Microbiol. 101, 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Helm, J., Wendlandt, K.D., Jechorek, M., and Stottmeister, U. 2008. Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J. Appl. Microbiol. 150, 1054–1061.

    Article  CAS  Google Scholar 

  • Hesselsoe, M., Boysen, S., Iversen, N., Jørgensen, L., Murrell, J.C., McDonald, I., Radajewski, S., Thestrup, H., and Roslev, P. 2005. Degradation of organic pollutants by methane grown microbial consortia. Biodegradation 16, 435–448.

    Article  CAS  PubMed  Google Scholar 

  • Ho, A., De Roy, K., Thas, O., De Neve, J., Hoefman, S., Vandamme, P., Heylen, K., and Boon, N. 2014. The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J. 8, 1945–1948.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hrsak, D. and Begonja, A. 2000. Possible interactions within a methanotrophic heterotrophic groundwater community able to transform linear alkylbenzenesulfonates. Appl. Environ. Microbiol. 66, 4433–4439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iguchi, H., Yurimoto, H., and Sakai, Y. 2011. Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl. Environ. Microb. 77, 8509–8515.

    Article  CAS  Google Scholar 

  • Iltchenco, J., Almeida, L.G., Beal, L.L., Marconatto, L., Borges, L.G.A., Giongo, A., and Paesi, S. 2019. Microbial consortia composition on the production of methane from sugarcane vinasse. Biomass Conv. Bioref. DOI https://doi.org/10.1007/s13399-019-00426-0.

    Google Scholar 

  • Islam, M.A., Ong, H.R., Ethiraj, B., Cheng, C.K., and Rahman Khan, M.M. 2018. Optimization of co-culture inoculated microbial fuel cell performance using response surface methodology. J. Environ. Manage. 225, 242–251.

    Article  CAS  PubMed  Google Scholar 

  • Islas-Espinoza, M., Reid, B.J., Wexler, M., and Bond, P.L. 2012. Soil bacterial consortia and previous exposure enhance the biodegradation of sulfonamides from pig manure. Microb. Ecol. 64, 140–151.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, H., Chen, Y., Jiang, P., Zhang, C., Smith, T.J., Murrell, J.C., and Xing, X.H. 2010. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49, 277–288.

    Article  CAS  Google Scholar 

  • Jiang, H. and Xing, X.H. 2018. Mixed methanotrophic consortium for applications in environmental bioengineering and biocatalysis. In Kalyuzhnaya, M. and Xing, X.H. (eds.), Methane Biocatalysis: Paving the Way to Sustainability. Springer, Cham.

    Google Scholar 

  • Jeong, S.Y. and Kim, T.G. 2019. Development of a novel methanotrophic process with the helper micro-organism Hyphomicrobium sp. NM3. J. Appl. Microbiol. 126, 534–544.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, S.Y., Cho, K.S., and Kim, T.G. 2014. Density dependent enhancement of methane oxidation activity and growth of Methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp. Biotechnol. Rep. 4, 128–133.

    Article  Google Scholar 

  • Karthikeyan, O.P., Chidambarampadmavathy, K., Cirés, S., and Heimann, K. 2015. Review of sustainable methane mitigation and biopolymer production. Crit. Rev. Environ. Sci. Technol. 45, 1579–1610.

    Article  CAS  Google Scholar 

  • Kim, H.G., Han, H.G., and Kim, S.W. 2010. Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol. Bioprocess Eng. 15, 476–480.

    Article  CAS  Google Scholar 

  • Kim, H.J., Huh, J., Kwon, Y.W., Park, D., Yu, Y., Jang, Y.E., Lee, B.R., Jo, E., Lee, E.J., Heo, Y., Lee, W., and Lee, J. 2019. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat. Catal. 2, 342–353.

    Article  CAS  Google Scholar 

  • Kip, N., van Winden, J.F., Pan, Y., Bodrossy, L., Reichart, G.J., Smolders, A.J.P., Jetten, M.S.M., Damste, J.S.S., and Op den Camp, H.J.M. 2010. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat. Geosci. 3, 617–621.

    Article  CAS  Google Scholar 

  • Kleerebezem, R. and Loosdrecht, M.C.M.V. 2007. Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18, 207–212.

    Article  CAS  PubMed  Google Scholar 

  • Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H.N., and Reis, M.A.M. 2017. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4, 55.

    Article  PubMed Central  CAS  Google Scholar 

  • Kouzuma, A., Kato, S., and Watanabe, K. 2015. Microbial interspecies interactions: recent findings in syntrophic consortia. Front. Microbiol. 6, 477.

    PubMed  PubMed Central  Google Scholar 

  • Kumari, S., Regar, R.K., and Manickam, N. 2018. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour. Technol. 254, 174–179.

    Article  CAS  PubMed  Google Scholar 

  • Kurane, R. and Matsuyama, H. 1994. Production of a bioflocculant by mixed culture. Biosci. Biotechnol. Biochem. 58, 1589–1594.

    Article  CAS  PubMed  Google Scholar 

  • Laurinavichene, T.V., Laurinavichius, K.S., and Tsygankov, A.A. 2014. Integration of purple non-sulfur bacteria into the starch hydrolyzing consortium. Int. J. Hydrogen. Energ. 39, 7713–7720.

    Article  CAS  Google Scholar 

  • Lee, H.J., Bae, J.H., and Cho, K.M. 2001. Simultaneous nitrification and denitrification in a mixed methanotrophic culture. Biotechnol. Lett. 23, 935–941.

    Article  CAS  Google Scholar 

  • Lee, K.W., Shim, J.M., Yao, Z., Kim, J.A., and Kim, J.H. 2018. Properties of Kimchi fermented with GABA-producing lactic acid bacteria as a starter. J. Microbiol. Biotechnol. 28, 534–541.

    CAS  PubMed  Google Scholar 

  • Lee, S.G., Goo, J.H., Kim, H.G., Oh, J.I., Kim, Y.M., and Kim, S.W. 2004. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 26, 947–950.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Xing, J., Ma, F., and Pan, T. 2015. Introduction of compound bioflocculant and its application in water treatment. Adv. J. Food Sci. Technol. 9, 695–700.

    Article  CAS  Google Scholar 

  • Lin, T., Bai, X., Hu, Y., Li, B., Yuan, Y.J., Song, H., Yang, Y. and Wang, J. 2017. Synthetic Saccharomyces cerevisiae-Shewanella oneidensis consortium enables glucose-fed high-performance microbial fuel cell. AIChE J. 63, 1830–1838

    Article  CAS  Google Scholar 

  • Lin, Y., Wen, Z., Zhu, L., Lin, J., and Cen, P. 2013. Butanol production from corncob in the sequential co-culture of Clostridium thermocellum and Clostridium beijerinckii. J. Chem. Eng. Chinese U 3, 444–449.

    Google Scholar 

  • Linares, D.M., Gómez, C., Renes, E., Fresno, J.M., Tornadijo, M.E., Ross, R.P., and Stanton, C. 2017. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional healthpromoting dairy foods. Front. Microbiol. 8, 846.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Yu, Y.Y., Chen, T., and Chen, W.N. 2017a. A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity. Biotechnol. Bioeng. 114, 526–532.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Ding, M., Ling, W., Yang, Y., Zhou, X., Li, B.Z., Chen, T., Nie, Y., Wang, M., Zeng, B., et al. 2017b. A three-species microbial consortium for power generation. Energy Environ. Sci. 10, 1600–1609.

    Article  CAS  Google Scholar 

  • Liu, Y., Chang, H., Li, Z., Feng, Y., Cheng, D., and Xue, J. 2017c. Biodegradation of gentamicin by bacterial consortia AMQD4 in synthetic medium and raw gentamicin sewage. Sci. Reports 7, 11004.

    Article  CAS  Google Scholar 

  • Liu, P.T., Lu, L., Duan, C.Q., and Yan, G.L. 2016. The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. LWT-Food Sci. Technol. 71, 356–363.

    Article  CAS  Google Scholar 

  • Luvuyo, N., Nwodo, U.U., Mabinya, L.V., and Okoh, A.I. 2013. Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacterium sp. Mayor. BMC Biotechnol. 13, 62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardina, P., Li, J., Patel, S.K.S., Kim, I.W., Lee, J.K., and Selvara, C. 2016. Potential of immobilized whole-cell Methylocella tundrae as a biocatalyst for methanol production from methane. J. Microbiol. Biotechnol. 26, 1234–1241.

    Article  CAS  PubMed  Google Scholar 

  • Miyano, K., Ye, K., and Shimizu, K. 2000. Improvement of vitamin B12 fermentation by reducing the inhibitory metabolites by cell recycle system and a mixed culture. Biochem. Eng. J. 6, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • More, T.T., Yan, S., Tyagi, R.D., and Surampalli, R.Y. 2015. Biopolymers production by mixed culture and their applications in water and wastewater treatment. Water Environ. Res. 87, 533–546.

    Article  CAS  PubMed  Google Scholar 

  • Moscoviz, R., Trably, E., Bernet, N., and Carrère, H. 2018. The environmental biorefinery: state-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation. Green Chem. 20, 3159–3179.

    Article  CAS  Google Scholar 

  • Mounier, J., Gelsomino, R., Goerges, S., Vancanneyt, M., Vandemeulebroecke, K., Hoste, B., Scherer, S., Swings, J., Fitzgerald, G.F., and Cogan, T.M. 2005. Surface microflora of four smear-ripened cheeses. Appl. Environ. Microbiol. 71, 6489–6500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama, S., Kiyoshi, K., Kadokura, T., and Nakazato, A. 2011. Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4. Appl. Environ. Microbiol. 77, 6470–6475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki, S., Kishimoto, N., and Fujita, T. 2006. Isolation and phylogenetic characterization of microbial consortia able to degrade aromatic hydrocarbons at high rates. Microbes Environ. 21, 44–52.

    Article  Google Scholar 

  • Ozer, C. and Yildirim H.K. 2018. Production of pickles by mixed culture fermentation. Am. J. Chem. Appl. 5, 57–68.

    CAS  Google Scholar 

  • Pachapur, V.L., Sarma, S.J., Brar, S.K., Bihan, Y.L., Buelna, G., and Verma, M. 2015. Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum. Bioresour. Technol. 193, 297–306.

    Article  CAS  PubMed  Google Scholar 

  • Padmaperuma, G., Kapoore, R.V., Gilmour, D.J., and Vaidyanathan, S. 2018. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit. Rev. Biotechnol. 38, 690–703.

    Article  CAS  PubMed  Google Scholar 

  • Papone, T., Paungbut, M., and Leesing, R. 2016. Producing of microbial oil by mixed culture of microalgae and oleaginous yeast using sugarcane molasses as carbon substrate. J. Clean Energy Technol. 4, 253–256.

    Article  CAS  Google Scholar 

  • Patel, S.K.S., Kumar, P., Mehariya, S., Purohit, H.J., Lee, J.K., and Kalia, V.C. 2014. Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int. J. Hydrogen Energy 39, 14663–14668.

    Article  CAS  Google Scholar 

  • Patel, S.K.S., Singh, R., Kumar, A., Jeong, J.H., Jeong, S.H., Kalia, V.C., Kim, I.W., and Lee, J.K. 2017. Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed. Bioresour. Technol. 241, 922–927.

    Article  CAS  PubMed  Google Scholar 

  • Patowary, K., Patowary, R., Kalita, M.C., and Deka, S. 2016. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front. Microbiol. 7, 1092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patra, J.K., Das, G., Paramithiotis, S., and Shin, H.S. 2016. Kimchi and other widely consumed traditional fermented foods of Korea: A review. Front. Microbiol. 7, 1493.

    PubMed  PubMed Central  Google Scholar 

  • Petersen, J.M. and Dubilier, N. 2009. Methanotrophic symbioses in marine invertebrates. Environ. Microbiol. Rep. 1, 319–335.

    Article  CAS  PubMed  Google Scholar 

  • Pieja, A.J., Morse, M.C., and Cal, A.J. 2017. Methane to bioproducts: the future of the bioeconomy? Curr. Opin. Chem. Biol. 41, 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Pieja, A.J., Rostkowski, K.H., and Criddle, C.S. 2011. Distribution and selection of poly-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microb. Ecol. 62, 564–573.

    Article  CAS  PubMed  Google Scholar 

  • Prpich, G.P. and Daugulis, A.J. 2005. Enhanced biodegradation of phenol by a microbial consortium in a solid-liquid two phase partitioning bioreactor. Biodegradation 16, 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Radwan, S.S. and Sorkhoh, N.A. 1993. Lipids of n-alkanes utilizing microorganisms and their application potential. Adv. Appl. Microbiol. 39, 29–90.

    Article  CAS  Google Scholar 

  • Rahnama, F., Vasheghani-Farahani, E., Yazdian, F., and Shojaosadati, S.A. 2012. PHB production by Methylocystis hirsuta from natural gas in a bubble column and a vertical loop bioreactor. Biochem. Eng. J. 65, 51–56.

    Article  CAS  Google Scholar 

  • Rajhi, H., Díaz, E.E., Rojas, P., and Sanz, J.L. 2013. Microbial consortia for hydrogen production enhancement. Curr. Microbiol. 67, 30–35.

    Article  CAS  PubMed  Google Scholar 

  • Rajoka, M.I., Ahmed, S., Hashmi, A.S., and Athar, M. 2012. Production of microbial biomass protein from mixed substrates by sequential culture fermentation of Candida utilis and Brevibacterium lactofermentum. Ann. Microbiol. 62, 1173–1179.

    Article  CAS  Google Scholar 

  • Reinke, J. 1872. Ueber gonidienartige Bildungen in einer dicotylischen Pflanzen. Botanische Zeitung (Berlin) 30, 59–61.

    Google Scholar 

  • Research and Markets. 2017. Global Polyhydroxyalkanoate (PHA) Market Analysis & Trends — Industry Forecast to 2025. https://www.researchandmarkets.com/reports/4375504/global-polyhydroxyalkanoate-pha-market-analysis. (accessed on 08 June 2019)

    Google Scholar 

  • Rosenbaum, M., He, Z., and Angenent, L.T. 2010. Light energy to bioelectrictiy: photosynthetic microbial fuel cells. Curr. Opin. Biotechnol. 21, 259–264.

    Article  CAS  PubMed  Google Scholar 

  • Sabra, W. and Zeng, A.P. 2014. Mixed microbial cultures for industrial biotechnology: success, chance and challenges. 7. Grunwald: Industrial Biocatalysis.

    Google Scholar 

  • Sagnak, R. and Kargi, F. 2011. Hydrogen gas production from acid hydrolyzed wheat starch by combined dark and photo-fermentation with periodic feeding. Int. J. Hydrogen Energ. 36, 10683–10689.

    Article  CAS  Google Scholar 

  • Schink, B. 2002. Synergistic interactions in the microbial world. Antonie van Leeuwenhoek 81, 257–261.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, T., Ziganshin, A.M., Nikolausz, M., Scholwin, F., Nelles, M., Kleinsteuber, S., and Proter, J. 2014. Effects of the reduction of the hydraulic retention time to 1.5 days at constant organic loading in CSTR, ASBR, and fixed-bed reactors — performance and methanogenic community composition. Biomass Bioenerg. 69, 241–248.

    Article  CAS  Google Scholar 

  • Schwenninger, S.M. and Meile, L. 2004. A mixed culture of Propionibacterium jensenii and Lactobacillus paracasei subsp. paracasei inhibits food spoilage yeasts. System. Appl. Microbiol. 27, 229–237.

    Article  Google Scholar 

  • Seo, H., Kim, J., Jung, J., Jin, H.M., Jeon, C.O., and Park, W. 2012. Complexity of cell-cell interactions between Pseudomonas sp. AS1 and Acinetobacter oleivorans DR1: metabolic commensalism, biofilm formation and quorum quenching. Res. Microbiol. 163, 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Shalin, T., Sindhu, R., Binod, P., Soccol, C.R., and Pandey, A. 2014. Mixed cultures fermentation for the production of poly-sz-hydroxybutyrate. Braz. Arch. Biol. Technol. 57, 644–652.

    Article  CAS  Google Scholar 

  • Shankar, S., Kansrajh, C., Dinesh, M.G., Satyan, R.S., Kiruthika, S., and Tharanipriya, A. 2014. Application of indigenous microbial consortia in bioremediation of oil-contaminated soils. Int. J. Environ. Sci. Technol. 11, 367–376.

    Article  CAS  Google Scholar 

  • Sieuwerts, S., De Bok, F.A.M., Hugenholtz, J., and Van Hylckama Vlieg, J.E.T. 2008. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl. Environ. Microbiol. 74, 4997–5007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simova, E.D., Frengova, G.I., and Beshkova, D.M. 2003. Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-Lactocacillus casei subsp. casei co-cultures in whey ultrafiltrate. J. Appl. Microbiol. 97, 512–519.

    Article  CAS  Google Scholar 

  • Simova, E.D., Frengova, G.I., and Beshkova, D.M. 2004. Exopolysaccharides produced by mixed culture of yeast Rhodotorula rubra GED10 and yogurt bacteria (Streptococcus thermophilus 13a + Lactobacillus bulgaricus 2–11). J. Appl. Microbiol. 97, 512–519.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., Kumar, M., Mittal, A., and Mehta, P.K. 2016. Microbial enzymes: industrial progress in 21st century. 3Biotech 6, 174.

    Google Scholar 

  • Singh, R., Kumar, M., Mittal, A., and Mehta, P.K. 2017. Microbial metabolites in nutrition, healthcare and agriculture. 3Biotech 7, 15.

    Google Scholar 

  • Skariyachan, S., Patil, A.A., Shankar, A., Manjunath, M., Bachappanavar, N., and Kiran, S. 2018. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stabil. 149, 52–68.

    Article  CAS  Google Scholar 

  • Slate, A.J., Whitehead, K.A., Brownson, D.A.C., and Banks, C.E. 2019. Microbial fuel cells: An overview of current technology. Renew. Sust. Energ. Rev. 101, 60–81.

    Article  CAS  Google Scholar 

  • Smid, E.J. and Lacroix, C. 2013. Microbe-microbe interactions in mixed culture food fermentations. Curr. Opin. Biotechnol. 24, 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Smith, L.H. and McCarty, P.L. 1997. Laboratory evaluation of a two stage treatment system for TCE co-metabolism by methane oxidizing mixed culture. Biotechnol Bioeng. 55, 650–659.

    Article  CAS  PubMed  Google Scholar 

  • Society for General Microbiology. 1999. Microbiology Today. Society for General Microbiology, Leicester, UK.

    Google Scholar 

  • Stock, M., Hoefman, S., Kerckhof, F.M., Boon, N., De Vos, P., De Baets, B., Heylen, K., and Waegeman, W. 2013. Exploration and prediction of interactions between methanotrophs and heterotrophs. Res. Microbiol. 164, 1045–1054.

    Article  PubMed  Google Scholar 

  • Stone, K.A., Hilliard, M.V., He, Q.P., and Wang, J. 2017. A mini review on bioreactor configurations and gas transfer enhancements for biochemical methane conversion. Biochem. Eng. J. 128, 83–92.

    Article  CAS  Google Scholar 

  • Strong, P., Xie, S., and Clarke, W.P. 2015. Methane as a resource: can the methanotrophs add value? Environ. Sci. Technol. 49, 4001–4018.

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen, T.H. and Mäyrä-Mäkinen, A.M. 1999. Propionic acid bacteria as protective cultures in fermented milks and breads. Lait 79, 165–174.

    Article  CAS  Google Scholar 

  • Sydney, E.B., Novak, A.C., Rosa, D., Pedroni Medeiros, A.B., Brar, S.K., Larroche, C., and Soccol, C.R. 2018. Screening and bioprospecting of anaerobic consortia for biohydrogen and volatile fatty acid production in a vinasse based medium through dark fermentation. Process Biochem. 67, 1–7.

    Article  CAS  Google Scholar 

  • Takagi, Y., Sugisawa, T., and Hoshino, T. 2010. Continuous 2-Keto-L-gulonic acid fermentation by mixed culture of Ketogulonigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia. Appl. Microbiol. Biotechnol. 86, 469–480.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., Zhao, D., Zhu, L., and Jiang, J. 2011. Simultaneous saccharification and fermentation of furfural residues by mixed cultures of lactic acid bacteria and yeast to produce lactic acid and ethanol. Eur. Food Res. Technol. 233, 489.

    Article  CAS  Google Scholar 

  • Tesfaw, A. and Assefa, F. 2014. Co-culture: a great promising method in single cell protein production. Biotechnol. Mol. Biol. Rev. 9, 12–20.

    Article  CAS  Google Scholar 

  • Tian, Z., Zhang, Y., Li, Y., Chi, Y., and Yang, M. 2015. Rapid establishment of thermophilic anaerobic microbial community during the one-step start up of thermophilic anaerobic digestion from a mesophilic digester. Water Res. 69, 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Tinzl-Malang, S.K., Rast, P., Grattepanche, F., Sych, J., and Lacroix, C. 2015. Exopolysaccharides from co-cultures of Weissella confuse 11GU-1 and Propionibacterium freudenreichii JS15 act synergistically on wheat dough and bread texture. Int. J. Food Microbiol. 214, 91–101.

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko, Y.A. and Khmelenina, V.N. 2002. Biology of extremophilic and extremotolerant methanotrophs. Arch. Microbiol. 177, 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Tshikantwa, T.S., Ullah, M.W., He, F., and Yang, G. 2018. Current trends and potential applications of interactions for human welfare. Front. Microbiol. 9, 1156.

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Ha, D., Bundervoet, B., Verstraete, W., and Boon, N. 2011. A sustainable, carbon neutral methane oxidation by a partnership of methane oxidizing communities and microalgae. Water Res. 45, 2845–2854.

    Article  CAS  PubMed  Google Scholar 

  • Veraart, A.J., Garbeva, P., van Beersum, F., Ho, A., Hordijk, C.A., Meima-Franke, M., Zweers, A.J., and Bodelier, P.L.E. 2018. Living apart together-bacterial volatiles influence methanotrophic growth and activity. ISME J. 12, 1163–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidali, M. 2001. Bioremediation. An overview. Pure Appl. Chem. 73, 1163–1172.

    Article  CAS  Google Scholar 

  • Waghmode, T.R., Kurade, M.B., Khandare, R.V., and Govindwar, S.P. 2011. A sequential aerobic/ microaerophilic decolorization of sulfonated mono azo dye Golden Yellow HER by microbial consortium GGBL. Int. Biodeter. Biodegr. 65, 1024–1034.

    Article  CAS  Google Scholar 

  • Wang, S., Zheng, G., and Zhou, L. 2010. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species. Water Res. 44, 5423–5431.

    Article  CAS  PubMed  Google Scholar 

  • Wang, V.B., Chua, S.L., Cai, Z., Sivakumar, K., Zhang, Q., Kjelleberg, S., Cao, B., Loo, S.C., and Yang, L. 2014. A stable synergistic microbial consortium for simultaneous azo dye removal and bioelectricity generation. Bioresour. Technol. 155, 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Shao, H., Zhu, S., Tian, K., Qiu, Q., and Huo, H. 2019. Degradation of 17β-estradiol and products by a mixed culture of Rhodococcus equi DSSKP-R-001 and Comamonas testosteroni QYY20150409. Biotechnol. Biotechnol. Equip. 33, 268–277.

    Article  Google Scholar 

  • Wang, Z., Yan, M., Chen, X., Li, D., Qin, L., Li, Z., Yao, J., and Liang, X. 2013. Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus for acetic acid production. Biochem. Eng. J. 79, 41–45.

    Article  CAS  Google Scholar 

  • Wendlandt, K.D., Jechorek, M., Helm, J., and Stottmeister, U. 2001. Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J. Biotechnol. 86, 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Wen, Z., Wu, M., Lin, Y., Yang, L., Lin, J., and Cen, P. 2014. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb. Cell Fact. 13, 92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo, S.L. and Pepe, O. 2018. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1801.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing, X.H., Wu, H., Luo, M.F., and Wang, B.P. 2006. Effects of organic chemicals on growth of Methylosinus trichosporium OB3b. Biochem. Eng. J. 31, 113–117.

    Article  CAS  Google Scholar 

  • Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S., and Takasaki, Y. 2001. Microbial hydrogen production from sweet potato starch residue. J. Biosci. Bioeng. 91, 58–63

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, N., Iguchi, H., Yurimoto, H., Murakami, A., and Sakai, Y. 2014. Aquatic plant surface as a niche for methanotrophs. Front. Microbiol. 5, 30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Liu, J., Shi, Z.P., Liu, L.M., and Chen, J. 2010. Manipulation of B. megaterium growth for efficient 2-KLG production by K. vulgare. Process Biochem. 45, 602–606.

    Article  CAS  Google Scholar 

  • Zhang, S., Merino, N., Okamoto, A., and Gedalanga, P. 2018a. Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microb. Biotechnol. 11, 833–847.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, T., Wang, X., Zhou, J., and Zhang, Y. 2018b. Enrichments of methanotrophic-heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities. J. Environ. Sci. 65, 133–143

    Article  Google Scholar 

  • Zhang, Z.Q., Lin, B., Xia, S.Q., Wang, X.J., and Yang, A.M. 2007. Production and application of a novel bioflocculant by multiple microorganism consortia using brewery wastewater as carbon source. J. Environ. Sci. 19, 667–673.

    Article  Google Scholar 

  • Zúñiga, C., Morales, M., Le Borgne, S., and Revah, S. 2011. Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J. Hazard. Mater. 190, 876–882.

    Article  PubMed  CAS  Google Scholar 

  • Zuroff, T.R., Xiques, S.B., and Curtis, W.R. 2013. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol. Biofuels 6, 59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work has been supported by a research grant of Ministry of Science and ICT, Republic of Korea (NRF-2018R1A- 2B2001006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Wouk Kim.

Ethics declarations

All authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Ryu, J. & Kim, S.W. Microbial consortia including methanotrophs: some benefits of living together. J Microbiol. 57, 939–952 (2019). https://doi.org/10.1007/s12275-019-9328-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9328-8

Keywords

Navigation