Skip to main content
Log in

Biology of extremophilic and extremotolerant methanotrophs

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract.

This review summarizes recent findings on the biology of obligate methanotrophic bacteria living in various extreme environments. By using molecular ecology techniques, it has become clear that obligate methanotrophs are ubiquitous in nature and well adapted to high or low temperature, pH and salinity. The isolation and characterization of pure cultures has led to the discovery of several new genera and species of extremophilic/tolerant methanotrophs. Their major physiological role is participation in the methane cycle and supplying C1 intermediates and various metabolites to other members of microbial communities in extreme ecosystems. To survive under extreme conditions, methanotrophs have developed diverse structure-function adaptive mechanisms including cell-surface layer formation, changes in cellular phospholipid composition and de novo synthesis of organic osmolytes such as ectoine, 5-oxoproline and sucrose. However, despite the above advances, basic knowledge of other stress protectants, as well as bioenergetic and genetic aspects of methanotroph adaptation, is still lacking. This information is necessary for better understanding the molecular mechanisms underlying the versatility of methanotrophs and for the development of novel biotechnological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trotsenko, Y.A., Khmelenina, V.N. Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177, 123–131 (2002). https://doi.org/10.1007/s00203-001-0368-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-001-0368-0

Navigation