Skip to main content

Advertisement

Log in

Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Clostridium butyricum can convert glycerol into 1,3-propanediol, thereby generating unfortunately a high amount of acetate, formate and butyrate as inhibiting by-products. We have proposed a novel mixed culture comprising C. butyricum and a methane bacterium, Methanosarcina mazei, to relieve the inhibition and to utilise the by-products for energy production. In order to examine the efficiency of such a mixed culture, metabolic modelling of the culture system was performed in this work. The metabolic networks for the organisms were reconstructed from genomic and physiological data. Several scenarios were analysed to examine the preference of M. mazei in scavenging acetate and formate under conditions of different substrate availability, including methanol as a co-substrate, since it may exist in glycerol solution from biodiesel production. The calculations revealed that if methanol is present, the methane production can increase by 130%. M. mazei can scavenge over 70% of the acetate secreted by C. butyricum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ashworth W (1991) The encyclopaedia of environmental studies. Facts on File, New York

    Google Scholar 

  2. Calow P (1998) The encyclopaedia of ecology and environmental management. Oxford Blackwell Science, Oxford

    Google Scholar 

  3. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  Google Scholar 

  4. Schink B (2002) Synergistic interactions in the microbial world. Antonie van Leeuvenhoek 81:257–261

    Article  CAS  Google Scholar 

  5. Stouthamer AH (1988) Bioenergetics and yields with electron acceptors other than oxygen. In: Erickson LE, Fung DYC (eds) Handbook on anaerobic fermentations. Marcel Dekker, New York

    Google Scholar 

  6. Misoph M, Drake HL (1996) Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1. J Bacteriol 178:3140–3145

    CAS  Google Scholar 

  7. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl D (2007) Metabolic modeling of a mutualistic community. Mol Syst Biol 3:92

    Article  Google Scholar 

  8. Kim BH, Gadd GM (2008) Bacterial physiology and metabolism. Cambridge University Press, New York

    Google Scholar 

  9. Biebl H, Marten S, Hippe H, Deckwer W-D (1992) Glycerol conversion to 1, 3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36:592–597

    Article  CAS  Google Scholar 

  10. Zeng A-P, Ross A, Biebl H, Tag C, Guenzel B, Deckwer W-D (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911

    Article  CAS  Google Scholar 

  11. Nishio NK, Kuroda K, Nagai S (1990) Methanogenesis of Glucose by defined thermophilic coculture of Clostridium thermoaceticum and Methanosarcina sp. J Ferm Bioeng 70:398–403

    Article  Google Scholar 

  12. Weimer PJ, Zeikus JG (1977) Fermentation of cellulose and cellobiose by Clostridium thermocellum in absence and presence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol 33:289–297

    CAS  Google Scholar 

  13. Yang ST, Tang IC (1990) Methanogenesis from lactate by a co-culture of Clostridium formicoaceticum and Methanosarcina mazei. Appl Microbiol Biotechnol 35:119–123

    Google Scholar 

  14. Yang Y, Tsukahara K, Sawayama S (2008) Biodegradation and methane production from glycerol-containing synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic conditions. Proc Biochem 43:362–367

    Article  CAS  Google Scholar 

  15. Zeng A-P (1996) Pathway and kinetic analysis of 1, 3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioprocess Eng 14:169–175

    Article  CAS  Google Scholar 

  16. Jung K (2001) Quantitative Physiologie und metabolische Stofflußmodellierung der mikrobiellen Herstellung von 1,3-propandiol. PhD thesis, Gesselschaft für Biotechnologische Forschung mbH in Braunschweig

  17. Zhang Q, Teng H, Sun Y, Xiu Z, Zeng A-P (2008) Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumoniae. Bioprocess Biosyst Eng 31:127–135

    Article  CAS  Google Scholar 

  18. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Sunderland

    Google Scholar 

  19. Deppenheimer U (2003) Redox-driven proton translocation in methanogenic Archea. Cell Mol Life Sci 59:1513–1533

    Article  Google Scholar 

  20. Feist AM, Scholten JCM, Pallsson BO, Brockman FJ, Ideker T (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 1:4

    Google Scholar 

  21. Ahrens K, Menzel K, Zeng A-P, Deckwer W-D (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng 59:544–552

    Article  CAS  Google Scholar 

  22. Hartlep M (2006) Prozessenwicklung und metabolic engineering der mikrobiellen Produktion von 1,3-Propandiol. PhD thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig

  23. Zeng A-P (1995) Effect of CO2 absorption on the measurement of CO2 evolution rate in aerobic and anaerobic continuous cultures. Appl Microbiol Biotechnol 42:688–691

    Article  CAS  Google Scholar 

  24. Solomon BO, Zeng A-P, Biebl H, Schlieker H, Posten C, Deckwer W-D (1995) Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. J Biotechnol 39:107–117

    Article  CAS  Google Scholar 

  25. Rajoka MI, Tabassum R, Malik KA (1999) Enhanced rate of methanol and acetate uptake for production of methane in batch cultures using Methanosarcina mazei. Bioresour Technol 67:305–311

    Article  CAS  Google Scholar 

  26. Weimer PJ, Zeikus JG (1978) One carbon metabolism in methanogenic bacteria. Cellular characterization and growth of Methanosarcina barkeri. Arch Microbiol 119:49–57

    Article  CAS  Google Scholar 

  27. Schauer NL, Ferry JG (1980) Metabolism of formate in Methanobacterium formicicum. J Bacteriol 142:800–807

    CAS  Google Scholar 

Download references

Acknowledgments

Marcin Bizukojc wishes to express his gratitude to Deutscher Akademischer Austausch Dienst (DAAD) for the financial support during his stay at the Hamburg University of Technology (special scholarship programme “Modern Applications of Biotechnology” PKZ no. A/07/97472). This work was also supported by the German Research Foundation (DFG project no. ZE 542/2-1) and the European 7 Framework Research Programme (project no. 212671-Propanergy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcin Bizukojc or An-Ping Zeng.

Electronic Supplementary Material

Appendices

Abbreviations used in the graphs, tables and text (for protein amino acids, standard abbreviations were used)

3-HPA:

3-Hydroxypropionaldehyde

3PG:

3-Phosphoglycerate

AcCoA, CH3COCoA:

Acetyl-CoA

AKG:

α-Ketoglutarate

Asa:

l-Aspartate 4-semialdehyde

CH2H4MPT:

Methylenetetrahydromethanopterin

CH3CoM:

Methyl coenzyme M

CH3H4MPT:

Methyltetrahydromethanopterin

CH3H4SPT:

Methyltetrahydrosarcinopterin

CHR:

Chorismate

CO:

Carbon monoxide

DHA:

Dihydroxyacetone

DHAP:

Dihydroxyacetonephosphate

E4P:

Erythrose-4-phosphate

EtOH:

Ethanol

F420(H), F420(red):

Coenzyme F420 (reduced)

F6P:

Fructose-6-phosphate

FBP:

Fructose-1,6-biphosphate

Fd(H), FdH:

Ferredoxin (reduced)

FORM:

Formic acid (formate)

FUM:

Fumarate

G6P:

Glucose-6-phosphate

H4MPT:

Tetrahydromethanopterin

H4SPT:

Tetrahydrosarcinopterin

HAc:

Acetic acid (acetate)

HBu:

Butyric acid (butyrate)

HCH4MPT:

Methenyltetrahydromethanopterin

HCOH4MPT:

Formyltetrahydromethanopterin

Hse:

Homoserine

ICT:

Isocitrate

Ind:

Indole

kiV:

α-Ketoisovalerate

LAC:

Lactic acid (lactate)

MeOH:

Methanol

MethPhen(H), dHMePhe:

Methanophenazine (reduced)

OAA:

Oxalacetate

PEP:

Phosphoenolpyruvate

PPA:

Prephenate

PRPP:

Phosphoribosyl pyrophosphate

PYR:

Pyruvate

qCH3COOH:

Specific acetate uptake rate

qCH3OH:

Specific methanol uptake rate

qCH4 :

Specific methane production rate

qCO2 :

Specific carbon dioxide production/uptake rate

qH2 :

Specific hydrogen uptake rate

qHCOOH:

Specific formate uptake rate

RIB5P:

Ribose-5-phosphate

S7P:

Sedoheptulose-7-phosphate

SKA:

Shikimate

SUC-CoA:

Succinyl-CoA

X5P:

Xylose-5-phosphate

\( {\text{Y}}_{{{\text{CH}}_{ 4} / {\text{CH}}_{ 3} {\text{COOH}}}} \) :

Methane to acetate yield coefficient

\( {\text{Y}}_{{{\text{CH}}_{ 4} / {\text{CH}}_{ 3} {\text{OH}}}} \) :

Methane to methanol yield coefficient

\( {\text{Y}}_{{{\text{CH}}_{ 4} / {\text{CO}}_{ 2} }} \) :

Methane to carbon dioxide yield coefficient

\( {\text{Y}}_{{{\text{CH}}_{ 4} / {\text{HCOOH}}}} \) :

Methane to formate yield coefficient

\( {\text{Y}}_{{{\text{CH}}_{ 4} / {\text{X}}}} \) :

Methane to biomass yield coefficient

\( {\text{Y}}_{{{\text{CO}}_{ 2} / {\text{H}}_{ 2} }} \) :

Carbon dioxide to hydrogen yield coefficient

\( {\text{Y}}_{{{\text{CO}}_{ 2} / {\text{HCOOH}}}} \) :

Carbon dioxide to formate yield coefficient

μMM :

M. mazei specific biomass growth rate

Abbreviations used in the formulation of metabolic network only (in the stoichiometric equations): exchanged metabolites

The notation was so designed that the names of all metabolites, which belong to C. butyricum start with letter “P” and so do the names of reaction rates listed down in Tables 1 and 2. For M. mazei, it is the letter “M”.

CO2(exch):

Carbon dioxide (the exchanged pool)

FORM(exch):

Formate (the exchanged pool)

H2(exch):

Hydrogen (the exchanged pool)

HAc(exch):

Acetate (the exchanged pool)

Intracellular metabolites of M. mazei

M_3PG:

3-Phosphoglycerate

M_AcCoA:

Acetyl coenzyme A

M_AcP:

Acetophosphate

M_aIVA:

α-Ketovalerate

M_AKG:

Aconitate

M_Ala:

Alanine

M_Arg:

Arginine

M_ASA:

l-Aspartate 4-semialdehyde

M_Asn:

Asparagine

M_Asp:

Aspartate

M_ATP:

Adenosinetriphosphate

M_CH3CoM:

Methyl coenzyme M

M_CH3H4MPT:

Methyltetrahydromethanopterin

M_CH3H4SPT:

Methyltetrahydrosarcinopterin

M_CH3OH:

Methanol

M_CH4 :

Methane

M_CHR:

Chorismate

M_CO:

Carbon monoxide

M_CO2 :

Carbon dioxide

M_Cys:

Cysteine

M_dHMethphen:

Methanophenazine (reduced)

M_DNA:

DNA

M_E4P:

Erythrose-4-phosphate

M_F420red:

Coenzyme F420 (reduced)

M_F6P:

Fructose-6-phosphate

M_FBP:

Fructose-1,6-diphosphate

M_FdH:

Ferredoxin (reduced)

M_FORM:

Formate

M_FORMH4MPT:

Formyltetrahydromethanopterin

M_FUM:

Fumarate

M_G1P:

Glucose

M_G6P:

Glucose-6-phosphate

M_GA3P:

Glyceraldehyde phosphate

M_Gln:

Glutamine

M_Glu:

Glutamate

M_Gly:

Glycine

M_gly:

Glycogen

M_H+ :

Hydrogen ions

M_H2 :

Hydrogen

M_HAc:

Acetic acid

M_His:

Histidine

M_Hse:

Homoserine

M_Ile:

Isoleucine

M_IND:

Indole

M_Leu:

Leucine

M_Lys:

Lysine

M_MeH4MPT:

Methylenetetrahydromethanopterin

M_Met:

Methionine

M_MthH4MPT:

Methenyltetrahydromethanopterin

M_N2 :

Nitrogen

M_NADH:

NADH

M_NADPH:

NADPH

M_NH4 + :

Ammonium ions

M_OAA:

Oxalacetate

M_PEP:

Phosphoenolpyruvate

M_Phe:

Phenylalanine

M_PLIP:

Phospholipids

M_PPA:

Prephenate

M_Pro:

Proline

M_PROT:

Protein

M_PRPP:

Phosphoribosyl pyrophosphate

M_PYR:

Pyruvate

M_RIB5P:

Ribose-5-phosphate

M_RNA:

RNA

M_SED7P:

Sedoheptulose-7-phosphate

M_Ser:

Serine

M_SKA:

Shikimate

M_SUCC_CoA:

Succinyl coenzyme A

M_Thr:

Threonine

M_Trp:

Tryptophane

M_Tyr:

Tyrosine

M_Val:

Valine

M_X:

Biomass

M_XYL5P:

Xylose-5-phosphate

Intracellular metabolites of C. butyricum

P_13PD:

1,3-Propanediol

P_3HPA:

3-Hydroxypropionealdehyde

P_AcCoA:

Acetyl coenzyme A

P_AKG:

α-ketoglutarate

P_ATP:

ATP

P_CO2 :

Dioxide

P_DHA:

Dihydroxyacetone

P_DHAP:

Dihydroxyacetonephosphate

P_E4P:

Erythrose-4-phosphate

P_EtOH:

Ethanol

P_FdH:

Ferredoxin (reduced)

P_FORM:

Formate

P_FRU6P:

Fructose-6-phosphate

P_GA3P:

Glyceraldehyde-3-phosphate

P_GLC:

Glycerol

P_GLU6P:

Glucose-6-phosphate

P_H2 :

Hydrogen

P_HAc:

Acetic acid

P_HBu:

Butyric acid

P_ISOCIT:

Isocitrate

P_LAC:

Lactate

P_NADH:

NADH

P_NADPH:

NADPH

P_NH4 + :

Ammonium ions

P_OAA:

Oxalacetate

P_PEP:

Phosphoenolpyruvate

P_PYR:

Pyruvate

P_RIBOS5P:

Ribose-5-phosphate

P_RIBUL5P:

Ribulose-5-phosphate

P_S7P:

Sedoheptulose-7-phosphate

P_X:

Biomass

P_XYL5P:

Xylose-5-phosphate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bizukojc, M., Dietz, D., Sun, J. et al. Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions. Bioprocess Biosyst Eng 33, 507–523 (2010). https://doi.org/10.1007/s00449-009-0359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0359-0

Keywords

Navigation