Skip to main content
Log in

Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

CO2 photoreduction by semiconductors is of growing interest. Fabrication of oxygen-deficient surfaces is an important strategy for enhancing CO2 photoreduction activity. However, regeneration of the oxygen vacancies in photocatalysts is still a problem since an oxygen vacancy will be filled up by the O atom from CO2 after the dissociation process. Herein, we have fabricated highly efficient BiOCl nanoplates with photoinduced oxygen vacancies. Oxygen vacancies were easily regenerated by light irradiation due to the high oxygen atom density and low Bi-O bond energy even when the oxygen vacancies had been filled up by the O atom in the photocatalytic reactions. These oxygen vacancies not only enhanced the trapping capability for CO2, but also enhanced the efficiency of separation of electron-hole pairs, which resulted in the photocatalytic CO2 reduction under simulated solar light. Furthermore, the generation and recovery of the defects in the BiOCl could be realized during the photocatalytic reduction of CO2 in water. The existence of photoinduced defects in thin BiOCl nanoplates undoubtedly leads to new possibilities for the design of solar-driven bismuth based photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakakura, T.; Choi, J. C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 2007, 107, 2365–2387.

    Article  Google Scholar 

  2. Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621–6658.

    Article  Google Scholar 

  3. Izumi, Y. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 2013, 257, 171–186.

    Article  Google Scholar 

  4. Liu, L. J.; Zhao, H. L.; Andino, J. M.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2012, 2, 1817–1828.

    Article  Google Scholar 

  5. Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.

    Article  Google Scholar 

  6. Mahmodi, G.; Sharifnia, S.; Rahimpour, F.; Hosseini, S. N. Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: Effect of operational parameters and optimization. Sol. Energy Mater. Sol. Cell. 2013, 111, 31–40.

    Article  Google Scholar 

  7. Gokon, N.; Hasegawa, N.; Kaneko, H.; Aoki, H.; Tamaura, Y.; Kitamura, M. Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry. Sol. Energy Mater. Sol. Cell. 2003, 80, 335–341.

    Article  Google Scholar 

  8. Liu, Q.; Zhou, Y.; Tian, Z. P.; Chen, X. Y.; Gao, J.; Zou, Z. G. Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation. J. Mater. Chem. 2012, 22, 2033–2038.

    Article  Google Scholar 

  9. Li, X.; Liu, H. L.; Luo, D. L.; Li, J. T.; Huang, Y.; Li, H. L.; Fang, Y. P.; Xu, Y. H.; Zhu, L. Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J. 2012, 180, 151–158.

    Article  Google Scholar 

  10. Praus, P.; Kozák, O.; Koči, K.; Panáček, A.; Dvorský, R. CdS nanoparticles deposited on montmorillonite: Preparation, characterization and application for photoreduction of carbon dioxide. Colloid Interface Sci. 2011, 360, 574–579.

    Article  Google Scholar 

  11. Cheng, H. F.; Huang, B. B.; Liu, Y. Y.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chem. Commun. 2012, 48, 9729–9731.

    Article  Google Scholar 

  12. Zhou, Y.; Tian, Z. P.; Zhao, Z. Y.; Liu, Q.; Kou, J. H.; Chen, X. Y.; Gao, J.; Yan, S. C.; Zou, Z. G. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces 2011, 3, 3594–3601.

    Article  Google Scholar 

  13. Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang, M. H.; Whangbo, M. H. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal. Commun. 2009, 11, 210–213.

    Article  Google Scholar 

  14. Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.

    Article  Google Scholar 

  15. Liu, C.; Dubois, K. D.; Louis, M. E.; Vorushilov, A. S.; Li, G. H. Photocatalytic CO2 reduction and surface immobilization of a tricarbonyl Re(I) compound modified with amide groups. ACS Catal. 2013, 3, 655–662.

    Article  Google Scholar 

  16. Lo, L. T. L.; Lai, S. W.; Yiu, S. M.; Ko, C. C. A new class of highly solvatochromic dicyano rhenate(I) diimine complexes-synthesis, photophysics and photocatalysis. Chem. Commun. 2013, 49, 2311–2313.

    Article  Google Scholar 

  17. Morimoto, T.; Tanabe, J.; Sakamoto, K.; Koike, K.; Ishitani, O. Selective H2 and CO production with rhenium(I) biscarbonyl complexes as photocatalyst. Res. Chem. Intermed. 2013, 39, 437–447.

    Article  Google Scholar 

  18. Wang, G. M.; Ling, Y. C.; Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 2012, 4, 6682–6691.

    Article  Google Scholar 

  19. Jiao, W.; Wang, L. Z.; Liu, G.; Lu, G. Q.; Cheng, H. M. Hollow anatase TiO2 single crystals and mesocrystals with dominant {101} facets for improved photocatalysis activity and tuned reaction preference. ACS Catal. 2012, 2, 1854–1859.

    Article  Google Scholar 

  20. Liu, L. J.; Zhao, C. Y.; Li, Y. Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2−x nanoparticles at room temperature. J. Phys. Chem. C 2012, 116, 7904–7912.

    Article  Google Scholar 

  21. Ye, L. Q.; Deng, K. J.; Xu, F.; Tian, L. H.; Peng, T. Y.; Zan, L. Increasing visible-light absorption for photocatalysis with black BiOCl. Phys. Chem. Chem. Phys. 2012, 14, 82–85.

    Article  Google Scholar 

  22. Ye, L. Q.; Zan, L.; Tian, L. H.; Peng, T. Y.; Zhang, J. J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 2011, 47, 6951–6953.

    Article  Google Scholar 

  23. Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem Soc. 2013, 135, 10411–10417.

    Article  Google Scholar 

  24. Wang, D. H.; Gao, G. Q.; Zhang, Y. W.; Zhou, L. S.; Xu, A. W.; Chen, W. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale 2012, 4, 7780–7785.

    Article  Google Scholar 

  25. Weng, S. X.; Chen, B. B.; Xie, L. Y.; Zheng, Z. Y.; Liu, P. Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J. Mater. Chem A 2013, 1, 3068–3075.

    Article  Google Scholar 

  26. Zhao, K.; Zhang, L. Z.; Wang, J. J.; Li, Q. X.; He, W. W.; Yin, J. J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem Soc. 2013, 135, 15750–15753.

    Article  Google Scholar 

  27. Liu, X. W.; Cao, H. Q.; Yin, J. F. Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res. 2011, 4, 470–482.

    Article  Google Scholar 

  28. Zhang, S. M.; Zhang, G. K.; Yu, S. J.; Chen, X. G.; Zhang, X. Y. Efficient photocatalytic removal of contaminant by Bi3NbxTa1−x O7 nanoparticles under visible light irradiation. J. Phys. Chem. C 2009, 113, 20029–20035.

    Article  Google Scholar 

  29. Jovalekic, C.; Pavlovic, M.; Osmokrovic, P.; Atanasoska, L. X-ray photoelectron spectroscopy study of Bi4Ti3O12 ferroelectric ceramics. Appl. Phys. Lett. 1998, 72, 1051–1053.

    Article  Google Scholar 

  30. Xing, M. Y.; Fang, W. Z.; Nasir, M.; Ma, Y. F.; Zhang, J. L.; Anpo, M. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. J. Catal. 2013, 297, 236–243.

    Article  Google Scholar 

  31. Armelao, L.; Bottaro, G.; Maccato, C.; Tondello, E. Bismuth oxychloride nanoflakes: Interplay between composition-structure and optical properties. Dalton Trans. 2012, 41, 5480–5485.

    Article  Google Scholar 

  32. Aiura, Y.; Iga, F.; Nishihara, Y.; Ohnuki, H.; Kato, H. Effect of oxygen vacancies on electronic states of CaVO3−δ and SrVO3−δ : A photoemission study. Phys. Rev. B 1993, 47, 6732–6735.

    Article  Google Scholar 

  33. Zhang, X. C.; Zhao, L. J.; Fan, C. M.; Liang, Z. H.; Han, P. D. Effects of oxygen vacancy on the electronic structure and absorption spectra of bismuth oxychloride. Comp. Mater. Sci. 2012, 61, 180–184.

    Article  Google Scholar 

  34. Deng, Z. T.; Tang, F. Q.; Muscat, A. J. Strong blue photoluminescence from single-crystalline bismuth oxychloride nanoplates. Nanotechnology 2008, 19, 295705.

    Article  Google Scholar 

  35. Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030.

    Article  Google Scholar 

  36. Li, Y. X.; Zang, L.; Li, Y.; Liu, Y.; Liu, C. Y.; Zhang, Y.; He, H. Q.; Wang, C. Y. Photoinduced topotactic growth of bismuth nanoparticles from bulk SrBi2Ta2O9. Chem. Mater. 2013, 25, 2045–2050.

    Article  Google Scholar 

  37. Zhang, H. J.; Liu, L.; Zhou, Z. First-principles studies on facet-dependent photocatalytic properties of bismuth oxyhalides (BiOXs). RSC Adv. 2012, 2, 9224–9229.

    Article  Google Scholar 

  38. Tang, J. L.; Zhao, H. P.; Li, G. F.; Lu, Z.; Xiao, S. Q.; Chen, R. Citrate/urea/solvent mediated self-assembly of (BiO)2CO3 hierarchical nanostructures and their associated photocatalytic performance. Ind. Eng. Chem. Res. 2013, 52, 12604–12612.

    Article  Google Scholar 

  39. Kwon, Y.; Birdja, Y.; Spanos, I.; Rodriguez, P.; Koper, M. T. M. Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal. 2012, 2, 759–764.

    Article  Google Scholar 

  40. Martins, C. A.; Giz, M. J.; Camara, G. A.; Generation of carbon dioxide from glycerol: Evidences of massive production on polycrystalline platinum. Electrochim. Acta 2011, 56, 4549–4553.

    Article  Google Scholar 

  41. Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ. Sci. 2009, 2, 745–758.

    Article  Google Scholar 

  42. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H. Y.; Zapol, P. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc. 2011, 133, 3964–3971.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhong Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, W., Jiang, D. et al. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 8, 821–831 (2015). https://doi.org/10.1007/s12274-014-0564-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0564-2

Keywords

Navigation