Skip to main content
Log in

Generation and photocatalytic activities of Bi@Bi2O3 microspheres

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Composite Bi@Bi2O3 microspheres have been synthesized via a microwave-assisted solvothermal route. The Bi@Bi2O3 microspheres had a narrow size distribution in the range 1.2–2.8 mm. Glucose was selected as the reductant, BiCl3 as the bismuth source, and ethylene glycol (EG) as the solvent in the synthesis system. The as-synthesized sample was characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), particle diameter distribution, energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-vis) spectroscopy, and photoluminescence (PL) spectroscopy. The photocatalytic activities of the Bi@Bi2O3 microspheres were evaluated by the photodegradation of rhodamine B (RhB) and methyl orange (MO) dyes under UV light irradiation. The degradation reached ∼96.6% for RhB and 100% for MO after 4 h reaction in the presence of the as-synthesized Bi@Bi2O3 microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12, 693–713.

    Article  CAS  Google Scholar 

  2. Schärtl, W. Crosslinked spherical nanoparticles with core-shell topology. Adv. Mater. 2000, 12, 1899–1908.

    Article  Google Scholar 

  3. Garcia, N.; Kao, Y. H.; Strongin, M. Galvanomagnetic studies of bismuth films in quantum-size-effect region. Phys. Rev. B 1972, 5, 2029–2039.

    Article  Google Scholar 

  4. Heremans, J.; Hansen, O. P. Influence of non-parabolicity on intravalley electron-phonon scattering; the case of bismuth. J. Phys. C: Solid State Phys. 1979, 12, 3483–3497.

    Article  CAS  Google Scholar 

  5. Boukai, A.; Xu, K.; Heath, J. R. Size-dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires. Adv. Mater. 2006, 18, 864–869.

    Article  CAS  Google Scholar 

  6. Cornelius, T. W.; Toimil-Molares, M. E.; Neumann, R.; Fahsold, G.; Lovrincic, R.; Pucci, A.; Karim, S. Quantum size effects manifest in infrared spectra of single bismuth nanowires. Appl. Phys. Lett. 2006, 88, 103114.

    Article  Google Scholar 

  7. Chiu, P. H. P.; Shih, I. H. Nonlinear current-voltage characteristics of bismuth nanodot structures. Appl. Phys. Lett. 2006, 88, 072110.

    Article  Google Scholar 

  8. Li, L.; Yang, W. Y.; Huang, X. H.; Li, G. H.; Ang, R.; Zhang, L. D. Fabrication and electronic transport properties of Bi nanotube arrays. Appl. Phys. Lett. 2006, 88, 103119.

    Article  Google Scholar 

  9. Liu, H.; Wang, Z. L. Bismuth spheres grown in self-nested cavities in a silicon wafer. J. Am. Chem. Soc. 2005, 127, 15322–15326.

    Article  CAS  Google Scholar 

  10. Leontie, L.; Caraman, M.; Delibas, M.; Rusu, G. I. Optical properties of bismuth trioxide thin films. Mater. Res. Bull. 2001, 36, 1629–1637.

    Article  CAS  Google Scholar 

  11. Leontie, L.; Caraman, M.; Alexe, M.; Harnagea, C. Structural and optical characteristics of bismuth oxide thin films. Surf. Sci. 2002, 507, 480–485.

    Article  Google Scholar 

  12. Li, W. Facile synthesis of monodisperse Bi2O3 nanoparticles. Mater. Chem. Phys. 2006, 99, 174–180.

    Article  CAS  Google Scholar 

  13. Hameed, A.; Montini, T.; Gombac, V.; Fornasiero, P. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4−x nanocomposite. J. Am. Chem. Soc. 2008, 130, 9658–9659.

    Article  CAS  Google Scholar 

  14. Zhou, L.; Wang, W. Z.; Xu, H. L.; Sun, S. M.; Shang, M. Bi2O3 hierarchical nanostructures: Controllable synthesis, growth mechanism, and their application in photocatalysis. Chem. Eur. J. 2009, 15, 1776–1782.

    Article  CAS  Google Scholar 

  15. Li, H. Y.; Wang, D. J.; Wang, P.; Fan, H. M.; Xie, T. F. Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres. Chem. Eur. J. 2009, 15, 12521–12527.

    Article  CAS  Google Scholar 

  16. Lin, X. P.; Xing, J. C.; Wang, W. D.; Shan, Z. C.; Xu, F. F.; Huang, F. Q. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts. J. Phys. Chem. C 2007, 111, 18288–18293.

    Article  CAS  Google Scholar 

  17. Lin, X. P.; Huang, F. Q.; Wang, W. D.; Shi, J. L. Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue. Scripta Mater. 2007, 56, 189–192.

    Article  CAS  Google Scholar 

  18. Hameed, A.; Gombac, V.; Montini, T.; Felisari, L.; Fornasiero, P. Photocatalytic activity of zinc modified Bi2O3. Chem. Phys. Lett. 2009, 483, 254–261.

    Article  CAS  Google Scholar 

  19. Liu, Y.; Xin, F.; Wang, F.; Luo, S.; Yin, X. Synthesis, characterization, and activities of visible light-driven Bi2O3-TiO2. J. Alloy. Compd. 2010, 498, 179–184.

    Article  CAS  Google Scholar 

  20. Bian, Z.; Huo, Y.; Zhang, Y.; Zhu, J.; Lu, Y.; Li, H. Aerosolspay assisted assembly of Bi2Ti2O7 crystals in uniform porous microspheres with enhanced photocatalytic activity. Appl. Catal. B. 2009, 91, 247–253.

    Article  CAS  Google Scholar 

  21. Wu, Y.; Lu, G.; Li, S. The doping effect of Bi on TiO2 for photocatalytic hydrogen generation and photodecolorization of rhodamine B. J. Phys. Chem. C 2009, 113, 9950–9955.

    Article  CAS  Google Scholar 

  22. Wang, Y.; Wen, Y.; Ding, H.; Shan, Y. Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic process. J. Mater. Sci. 2010, 45, 1385–1392.

    Article  CAS  Google Scholar 

  23. Shamaila, S.; Sajjad, A. K. L.; Chen, F.; Zhang, J. Study of highly visible light active Bi2O3 loaded ordered mesoporous titania. Appl. Catal. B. 2010, 94, 272–280.

    Article  CAS  Google Scholar 

  24. Li, L.; Yan, B. CeO2-Bi2O3 nanocomposite: Two step synthesis, microstructure and photocatalytic activity. J. Non-Cryst. Solids 2009, 355, 776–779.

    Article  CAS  Google Scholar 

  25. Bian, Z.; Ren, J.; Zhu, J.; Wang, S.; Lu, Y.; Li, H. Self-assembly of BixTi1−x O2 visible photocatalyst with core-shell structure and enhanced activity. Appl. Catal. B 2009, 89, 577–582.

    Article  CAS  Google Scholar 

  26. Drache, M.; Roussel, P.; Wignacourt, J. P. Structures and oxide mobility in Bi-Ln-O materials: Heritage of Bi2O3. Chem. Rev. 2007, 107, 80–96.

    Article  CAS  Google Scholar 

  27. Shuk, P.; Wiemhofer, H. D.; Guth, U.; Gopel, W.; Greenblatt, M. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 1996, 89, 179–196.

    Article  CAS  Google Scholar 

  28. Landry, C. C.; Barron, A. R. Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation. Science 1993, 260, 1653–1655.

    Article  CAS  Google Scholar 

  29. Gerbec, J. A.; Magana, D.; Washington, A.; Strouse, G. F. Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 2005, 127, 15791–15800.

    Article  CAS  Google Scholar 

  30. Gupta, M.; Leong, W. W. Microwaves and Metals; John Wiley & Sons (Asia) Pte. Ltd.: Singapore, 2007.

    Google Scholar 

  31. Zhu, J. F.; Zhu, Y. J. Microwave-assisted one-step synthesis of polyacrylamide-Metal (M = Ag, Pt, Cu) nanocomposites in ethylene glycol. J. Phys. Chem. B 2006, 110, 8593–8597.

    Article  CAS  Google Scholar 

  32. Jacob, D. S.; Genish, I.; Klein, L.; Gedanken, A. Carbon-coated core shell structured copper and nickel nanoparticles synthesized in an ionic liquid. J. Phys. Chem. B 2006, 110, 17711–17714.

    Article  CAS  Google Scholar 

  33. Li, D. S.; Komarneni, S. Microwave-assisted polyol process for synthesis of Ni nanoparticles. J. Am. Ceram. Soc. 2006, 89, 1510–1517.

    Article  CAS  Google Scholar 

  34. Park, S.; Kang, K. H.; Han, W. Q.; Vogt, T. Synthesis and characterization of Bi nanorods and superconducting NiBi particles. J. Alloy. Compd. 2005, 400, 88–91.

    Article  CAS  Google Scholar 

  35. Gao, Y. H.; Niu, H. L.; Zeng, C.; Chen, Q. W. Preparation and characterization, of single-crystalline bismuth nanowires by a low-temperature solvothermal process. Chem. Phys. Lett. 2003, 367, 141–144.

    Article  CAS  Google Scholar 

  36. Cao, H.; Wang, G.; Zhang, L.; Liang, Y.; Zhang, S.; Zhang, X. Shape and magnetic properties of single-crystalline hematite (α-Fe2O3) nanocrystals. ChemPhysChem 2006, 7, 1897–1901.

    Article  CAS  Google Scholar 

  37. Cao, H.; Wang, G.; Zhang, S.; Zhang, X.; Rabinovich, D. Growth and optical properties of wurtzite-type CdS nanocrystals. Inorg. Chem. 2006, 45, 5103–5108.

    Article  CAS  Google Scholar 

  38. Wu, Q.; Cao, H.; Zhang, S.; Zhang, X.; Rabinovich, D. Generation and optical properties of monodisperse wurtzitetype ZnS microspheres. Inorg. Chem. 2006, 45, 7316–7322.

    Article  CAS  Google Scholar 

  39. Wang, J.; Wang, X.; Peng, Q.; Li, Y. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. Inorg. Chem. 2004, 43, 7552–7556.

    Article  CAS  Google Scholar 

  40. Mitch, M. G.; Chase, S. J.; Fortner, J.; Yu, R. Q.; Lannin, J. S. Phase-transition in ultrathin Bi films. Phys. Rev. Lett. 1991, 67, 875–878.

    Article  CAS  Google Scholar 

  41. Lannin, J. S. Finite size effects on the dynamics of amorphous and nanocrystalline materials. J. Non-Cryst. Solids. 1992, 141, 233–240.

    Article  CAS  Google Scholar 

  42. Lannin, J. S.; Calleja, J. M.; Cardona, M. 2nd-order Raman-scattering in group-VB semimetals-Bi, Sb, and As. Phys. Rev. B 1975, 12, 585–593.

    Article  CAS  Google Scholar 

  43. Onari, S.; Miura, M.; Matsuishi, K. Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique. Appl. Surf. Sci. 2002, 197/198, 615–618.

    Article  Google Scholar 

  44. Huang, H. Z. Nanomaterials Analysis; Chemical Industry Press: Beijing, 2003.

    Google Scholar 

  45. Chastain, J. Handbook of X-ray Photoelectron Spectroscopy; PerkinElmer Corporation: Minnesota, 1992.

    Google Scholar 

  46. Hüfner, S. Photoelectron Spectroscopy, 2nd ed.; Springer-Verlag: New York, 1996.

    Google Scholar 

  47. Dharmadhikari, V. S.; Sainkar, S. R.; Badrinarayan, S.; Goswami, A. Characterization of thin-films of bismuth oxide by X-ray photo-electron spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 1982, 25, 181–189.

    Article  CAS  Google Scholar 

  48. Morgan, W. E.; Stec, W. J.; Van Vazer, J. R. Inner-orbital binding-energy shift of antimony and bismuth compounds. Inorg. Chem. 1973, 12, 953–955.

    Article  CAS  Google Scholar 

  49. Ding, P.; Du, Y. G.; Xu, Z. L. Effect of preparation methods of Bi2O3 nanoparticles on their photocatalytic activity. Chem. Res. Chinese. U. 2004, 20, 717–721.

    Google Scholar 

  50. Qu, L.; Shi, G.; Wu, X.; Fan, B. Facile route to silver nanotubes. Adv. Mater. 2004, 16, 1200–1203.

    Article  CAS  Google Scholar 

  51. Chen, S.; Liu, Y.; Shao, C.; Mu, R.; Lu, Y.; Zhang, J.; Shen, D.; Fan, X. Structural and optical properties of uniform ZnO nanosheets. Adv. Mater. 2005, 17, 586–590.

    Article  CAS  Google Scholar 

  52. Thostenson, E. T.; Chou, T. W. Microwave processing: Fundamentals and applications. Composites A 1999, 30, 1055–1071.

    Article  Google Scholar 

  53. Rao, K. J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P. A. Synthesis of inorganic solids using microwaves. Chem. Mater. 2002, 11, 882–895.

    Article  Google Scholar 

  54. Li, C.; O’Halloran, K. P.; Ma, H.; Shi, S. Multifunctional multilayer films containing polyxometalates and bismuth oxide nanoparticles. J. Phys. Chem. B 2009, 113, 8043–8048.

    Article  CAS  Google Scholar 

  55. Wang, C.; Shao, C.; Wang, L.; Zhang, L.; Li, X.; Liu, Y. Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. J. Colloid Interf. Sci. 2009, 333, 242–248.

    Article  CAS  Google Scholar 

  56. Yang, B. J.; Mo, M. S.; Hu, H. M.; Li, C.; Yang, X. G.; Li, Q. W.; Qian, Y. T. A rational self-sacrificing template route to β-Bi2O3 nanotube arrays. Eur. J. Inorg. Chem. 2004, 1785–1787.

  57. Dong, W. T.; Zhu, C. S. Preparation and optical properties of UV dye DMT-doped silica films. J. Phys. Chem. Solids 2003, 64, 265–271.

    Article  CAS  Google Scholar 

  58. Soitah, T. N.; Yang, C.; Yu, Y.; Niu, Y.; Sun, L. Properties of Bi2O3 thin films prepared via a modified Pechini route. Curr. Appl. Phys. 2010, 10, 13720–1377.

    Google Scholar 

  59. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Enviromental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  CAS  Google Scholar 

  60. Kanofsky, J. R. Singlet oxygen production by biological-systems. Chem. Biol. Interact. 1989, 70, 1–28.

    Article  CAS  Google Scholar 

  61. Liu, G. M.; Li, X. Z.; Zhao, J. C.; Hidaka, H.; Serpone, N. Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation. Environ. Sci. Technol. 2000, 34, 3982–3990.

    Article  CAS  Google Scholar 

  62. Kosanić, M. M.; Tričković, J. S. Degradation of pararosaniline dye photoassisted by visible light. J. Photochem. Photobiol. A 2002, 149, 247–251.

    Article  Google Scholar 

  63. Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. I. Influences of preparation conduction on activity. J. Phys. Chem. B 2003, 107, 7965–7969.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaqiang Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Cao, H. & Yin, J. Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res. 4, 470–482 (2011). https://doi.org/10.1007/s12274-011-0103-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0103-3

Keywords

Navigation