Skip to main content
Log in

Boosted photocatalytic removal of NO using direct Z-scheme UiO-66-NH2/Bi2MoO6 nanoflowers heterojunction: mechanism insight and humidity effect

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In practical applications, relative humidity in the air is a key factor affecting the photocatalytic removal of NO, which is often overlooked in previous studies. Here, we developed a direct Z-scheme UiO-66-NH2/Bi2MoO6 heterojunction with a nanoflower-like structure to systematically investigate the effect of relative humidity on photocatalytic removal of NO. The optimized heterojunction for the removal efficiency of NO was 71.6% at 1.07 mg·m−3 NO concentration (relative humidity = 10%), and the generation of NO2 was only 1.1%. Interestingly, with the increase in relative humidity, it showed a higher inhibition effect on NO2, while the removal of NO decreased slightly (8%), which might be attributed to the affinity effect of NO2 with water molecules and the competitive adsorption of H2O and NO on the surface of the heterojunction photocatalysts. Furthermore, the reaction pathways of NO removal at the developed heterojunctions were revealed by in situ DRIFTS analysis. This work provides a novel vision for the development of direct Z-scheme heterojunction photocatalysts to effectively remove NO and inhibit the formation of toxic intermediate NO2 under different humidities.

Graphical abstract

摘要

在实际应用中,空气中的相对湿度是影响光催化去除氮氧化物的关键因素,而以往的研究往往忽略了这一点。在此,我们开发了一种具有纳米花状结构的 Z 型 UiO-66-NH2/Bi2MoO6 异质结,系统研究了相对湿度对光催化去除 NO 的影响。当 NO 浓度为 1.07 mg·m-3(相对湿度=10%)时,优化异质结对 NO 的去除率为 71.6%,而 NO2 的生成率仅为 1.1%。有趣的是,随着相对湿度的增加,它对 NO2 的抑制作用增强,而对 NO 的去除率仅略有下降(8%),这可能是由于 NO2 与水分子的亲合效应以及 H2O 和 NO 在异质结光催化剂表面的竞争吸附所致。此外,原位 DRIFTS 分析揭示了异质结去除 NO 的反应途径。本研究为开发直接 Z 型异质结光催化剂提供了一个新的视角,使其能够在不同湿度条件下有效去除 NO 并抑制有毒中间产物 NO2 的形成。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu Q, Hailili R, Xin Y, Zhou Y, Huang Y, Pang X, Zhang K, Robertson PK, Bahnemann DW, Wang C. Efficient full spectrum responsive photocatalytic NO conversion at Bi2Ti2O7: co-effect of plasmonic Bi and oxygen vacancies. Appl Catal B. 2022;319:121888. https://doi.org/10.1016/j.apcatb.2022.12188.

    Article  CAS  Google Scholar 

  2. Shang H, Li M, Li H, Huang S, Mao C, Ai Z, Zhang L. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation. Environ Sci Technol. 2019;53(11):6444. https://doi.org/10.1002/anie.202305538.

    Article  CAS  PubMed  Google Scholar 

  3. Li S, Shang H, Tao Y, Li P, Pan H, Wang Q, Zhang S, Jia H, Zhang H, Cao J, Zhang B, Zhang R, Li G, Zhang Y, Zhang D, Li H. Hydroxyl radical-mediated efficient photoelectrocatalytic NO oxidation with simultaneous nitrate storage using a flow photoanode reactor. Angew Chem Int Ed. 2023;62:e202305538. https://doi.org/10.1002/ange.202305538.

    Article  CAS  Google Scholar 

  4. Wang L, Song XY, Tong HJ, Huo YN. Preparation of flower-like Bi/CuS photocatalyst by photo-reduction method. Chin J Rare Met. 2023;47(1):177. https://doi.org/10.13373/j.cnki.cjrm.XY22060030.

    Article  Google Scholar 

  5. Chu HY, Wang CC, Liu A. Algae removal via photocatalysis over MOFs-based materials: a mini review. Chin J Rare Met. 2023;47(1):116. https://doi.org/10.13373/j.cnki.cjrm.XY22040029.

  6. Zhu PF, Yin XH, Gao XH, Dong GH, Xu JK, Wang CY. Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies. Chinese J Catal. 2021;42(1):175. https://doi.org/10.1016/S1872-2067(20)63592-6.

    Article  CAS  Google Scholar 

  7. Ren HT, Qi F, Labidi A, Zhao JJ, Wang H, Xin Y, Luo JM, Wang CY. Chemically bonded carbon quantum dots/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic degradation: interfacial engineering and mechanism insight. Appl Catal B. 2023. https://doi.org/10.1016/j.apcatb.2023.122587.

    Article  Google Scholar 

  8. Zhou YC, Xu XY, Wang P, Fu HF, Zhao C, Wang CC. Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite. Chinese J Catal. 2019;40(12):1912. https://doi.org/10.1016/S1872-2067(19)63433-9.

    Article  Google Scholar 

  9. Liu CB, Jin T, Qian JC, Xu XJ, Meng XR, Chen ZG. Synthesis and photocatalytic property of CuS-Ag/g-C3N4. Chin J Rare Met. 2023;47(8):1104. https://doi.org/10.13373/j.cnki.cjrm.XY21070028.

    Article  Google Scholar 

  10. Zhao X, Feng J, Liu J, Lu J, Shi W, Yang G, Wang G, Feng P, Cheng P. Metal-organic framework-derived ZnO/ZnS heteronanostructures for efficient visible-light-driven photocatalytic hydrogen production. Adv Sci. 2018;5(4):1700590. https://doi.org/10.1002/advs.201700590.

    Article  CAS  Google Scholar 

  11. Yi XH, Ji HD, Wang CC, Li Y, Li YH, Zhao C, Wang A, Fu HF, Wang P, Zhao X, Liu W. Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: performance, mechanism, pathway and DFT calculations. Appl Catal B. 2021;293:120229. https://doi.org/10.1016/j.apcatb.2021.120229.

    Article  CAS  Google Scholar 

  12. Wang XJ, Zhao XL, Zhang DQ, Li GS, Li HX. Microwave irradiation induced UIO-66-NH2 anchored on graphene with high activity for photocatalytic reduction of CO2. Appl Catal B. 2018;228:47. https://doi.org/10.1016/J.APCATB.2018.01.066.

    Article  CAS  Google Scholar 

  13. Peterson GW, Mahle JJ, DeCoste JB, Gordon WO, Rossin JA. Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2. Angew Chem Int Ed. 2016;128(21):6343. https://doi.org/10.1002/anie.201601782.

    Article  CAS  Google Scholar 

  14. Zhao XX, Sun LL, Jin X, Xu MY, Yin SK, Li JZ, Li X, Shen D, Yan Y, Huo PW. Cu media constructed Z-scheme heterojunction of UiO-66-NH2/Cu2O/Cu for enhanced photocatalytic induction of CO2. Appl Surf Sci. 2021;545:148967. https://doi.org/10.1016/J.APSUSC.2021.148967.

    Article  CAS  Google Scholar 

  15. Sun ZL, Yang XL, Yu XF, Xia LH, Peng YH, Li Z, Zhang Y, Cheng JB, Zhang KS, Yu JQ. Surface oxygen vacancies of Pd/Bi2MoO6-x acts as “Electron Bridge” to promote photocatalytic selective oxidation of alcohol. Appl Catal B. 2021;285:119790. https://doi.org/10.1016/j.apcatb.2020.119790.

    Article  CAS  Google Scholar 

  16. Geng HY, Liu X, Shi GS, Bai GY, Ma J, Chen JB, Wu ZY, Song YL, Fang HP, Wang JJ. Graphene oxide restricts growth and recrystallization of ice crystals. Angew Chem Int Ed. 2017;56(4):997. https://doi.org/10.1002/anie.201609230.

    Article  CAS  Google Scholar 

  17. Yue D, Chen DC, Wang ZH, Ding H, Zong RL, Zhu YF. Enhancement of visible photocatalytic performances of a Bi2MoO6–BiOCl nanocomposite with plate-on-plate heterojunction structure. Phys Chem Chem Phys. 2014;16(47):26314. https://doi.org/10.1039/C4CP03865G.

    Article  CAS  PubMed  Google Scholar 

  18. Ma H, He Y, Li XF, Sheng JP, Li JY, Dong F, Sun YJ. In situ loading of MoO3 clusters on ultrathin Bi2MoO6 nanosheets for synergistically enhanced photocatalytic NO abatement. Appl Catal B. 2021;292:120159. https://doi.org/10.1016/j.apcatb.2021.120159.

    Article  CAS  Google Scholar 

  19. Huo WC, Xu WN, Cao T, Guo ZY, Liu XY, Ge GG, Li N, Lan T, Yao HC, Zhang YX, Dong F. Carbonate doped Bi2MoO6 hierarchical nanostructure with enhanced transformation of active radicals for efficient photocatalytic removal of NO. J Colloid Interface Sci. 2019;557:816. https://doi.org/10.1016/j.jcis.2019.09.089.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang GP, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM. Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity. Appl Catal B. 2019;250:313. https://doi.org/10.1016/j.apcatb.2019.03.055.

    Article  CAS  Google Scholar 

  21. Ma D, Wu J, Gao MC, Xin YJ, Sun YY, Ma TJ. Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator. Chem Eng J. 2017;313:1567. https://doi.org/10.1016/j.cej.2016.11.036.

    Article  CAS  Google Scholar 

  22. Huang AS, Wan LL, Caro J. Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity. Mater Res Bull. 2018;98:308. https://doi.org/10.1016/j.materresbull.2017.10.038.

    Article  CAS  Google Scholar 

  23. Hao JN, Yan B. Recyclable lanthanide-functionalized MOF hybrids to determine hippuric acid in urine as a biological index of toluene exposure. ChemComm. 2015;51:14509. https://doi.org/10.1039/C5CC05219J.

    Article  CAS  Google Scholar 

  24. Li YX, Wang X, Wang CC, Fu HF, Liu YB, Wang P, Zhao C. S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr (VI) reduction and bisphenol a degradation under LED visible light. J Hazard Mater. 2020;399:123085. https://doi.org/10.1016/j.jhazmat.2020.123085.

    Article  CAS  PubMed  Google Scholar 

  25. Zhong YX, Liu YH, Wu S, Zhu Y, Chen HB, Yu X, Zhang YM. Facile fabrication of BiOI/BiOCl immobilized films with improved visible light photocatalytic performance. Front Chem. 2018;6:58. https://doi.org/10.3389/fchem.2018.00058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin J, Yu JG, Guo D, Cui CC, Ho W. A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity. Small. 2015;11:5262. https://doi.org/10.1002/smll.201500926.

    Article  CAS  PubMed  Google Scholar 

  27. Liu L, Ouyang P, Li YH, Duan YY, Dong F, Lv KL. Insight into the mechanism of deep NO photo-oxidation by bismuth tantalate with oxygen vacancies. J Hazard Mater. 2022;439:129637. https://doi.org/10.1016/j.jhazmat.2022.129637.

    Article  CAS  PubMed  Google Scholar 

  28. Cao J, Zhao YJ, Lin HL, Xu BY, Chen SF. Facile synthesis of novel Ag/AgI/BiOI composites with highly enhanced visible light photocatalytic performances. J Solid State Chem. 2013;206:38. https://doi.org/10.1016/j.jssc.2013.07.028.

    Article  CAS  Google Scholar 

  29. Chen F, Huang HW, Ye LQ, Zhang TR, Zhang YH, Han XP, Ma TY. Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction. Adv Funct Mater. 2018;28:1804284. https://doi.org/10.1002/adfm.201804284.

    Article  CAS  Google Scholar 

  30. Liu JN, Sun XM, Jiang BJ, Liu MY, Li Q, Xiao XD, Wang HL, Zheng M, Guo SE, Wu J. UiO-66-NH2 octahedral nanocrystals decorated with ZnFe2O4 nanoparticles for photocatalytic alcohol oxidation. ACS Appl Nano Mater. 2022;5:2231. https://doi.org/10.1021/acsanm.1c03924.

    Article  CAS  Google Scholar 

  31. Ren GM, Wei ZX, Li ZZ, Zhang XC, Meng XC. Fabrication of S-scheme hollow TiO2@ Bi2MoO6 composite for efficiently photocatalytic CO2 reduction. Mater Today Chem. 2023;27:101260. https://doi.org/10.1016/j.mtchem.2022.101260.

    Article  CAS  Google Scholar 

  32. Li JR, Zhang WD, Ran MX, Sun YJ, Huang HW, Dong F. Synergistic integration of Bi metal and phosphate defects on hexagonal and monoclinic BiPO4: enhanced photocatalysis and reaction mechanism. Appl Catal B. 2019;243:313. https://doi.org/10.1016/j.apcatb.2018.10.055.

    Article  CAS  Google Scholar 

  33. Wang SY, Ding X, Yang N, Zhan GM, Zhang XH, Dong GH, Zhang LZ, Chen H. Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal. Appl Catal B. 2020;265:118585. https://doi.org/10.1016/j.apcatb.2019.118585.

    Article  CAS  Google Scholar 

  34. Hadjiivanov K, Knözinger H. Species formed after NO adsorption and NO+O2 co-adsorption on TiO2: an FTIR spectroscopic study. Phys Chem Chem Phys. 2000;2:2803. https://doi.org/10.1039/b002065f.

    Article  CAS  Google Scholar 

  35. Mikhaylov RV, Lisachenko AA, Shelimov BN, Kazansky VB, Martra G, Coluccia S. FTIR and TPD study of the room temperature interaction of a NO–oxygen mixture and of NO2 with titanium dioxide. J Phys Chem C. 2013;117:10345. https://doi.org/10.1021/JP311593S.

    Article  CAS  Google Scholar 

  36. Li YH, Gu ML, Zhang M, Zhang XM, Lv KL, Liu YQ, Ho WK, Dong F. C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for efficient and stable NO photo-oxidation. Chem. Eng. J. 2020; 389:124421. https://www.x-mol.com/paperRedirect/1227355726564839424.

  37. Hadjiivanov KI. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal Rev Sci Eng. 2000;42:71. https://doi.org/10.1081/CR-100100260.

    Article  CAS  Google Scholar 

  38. Pozdnyakov D, Filimonov V, Katal K. Infrared spectroscopic study of the chemisorption of nitric oxide and nitrogen dioxide on metal oxides. Kinet Katal. 1973;14:760. https://doi.org/10.1016/0021-9517(81)90013-0.

    Article  CAS  Google Scholar 

  39. Kantcheva M. Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts. J Catal. 2001;204:479. https://doi.org/10.1006/jcat.2001.3413.

    Article  CAS  Google Scholar 

  40. Tan TQ, Wang XM, Zhou X, Ma H, Fang RM, Geng Q, Dong F. Highly active Cs2SnCl6/C3N4 heterojunction photocatalysts operating via interfacial charge transfer mechanism. J Hazard Mater. 2022;439:129694. https://doi.org/10.1016/j.jhazmat.2022.129694.

    Article  CAS  PubMed  Google Scholar 

  41. Tang NF, Liu Y, Wang HQ, Wu ZB. Mechanism study of NO catalytic oxidation over MnOx/TiO2 catalysts. J Phys Chem C. 2011;115:8214. https://doi.org/10.1021/jp200920z.

    Article  CAS  Google Scholar 

  42. He WJ, Sun YJ, Jiang GM, Li YH, Zhang XM, Zhang YX, Zhou Y, Dong F. Defective Bi4MoO9/Bi metal core/shell heterostructure: enhanced visible light photocatalysis and reaction mechanism. Appl Catal B. 2018;239:619. https://doi.org/10.1016/j.apcatb.2018.08.064.

    Article  CAS  Google Scholar 

  43. Cui YP, Huang XX, Wang T, Jia LH, Nie QQ, Tan ZC, Yu HS. Graphene quantum dots/carbon nitride heterojunction with enhanced visible-light driven photocatalysis of nitric oxide: an experimental and DFT study. Carbon. 2022;191:502. https://doi.org/10.1016/j.carbon.2022.02.004.

    Article  CAS  Google Scholar 

  44. Li GJ, Lian Z, Wan ZW, Liu ZN, Qian JW, Deng Y, Zhang SL, Zhong Q. Efficient photothermal-assisted photocatalytic NO removal on molecular cobalt phthalocyanine/Bi2WO6 Z-scheme heterojunctions by promoting charge transfer and oxygen activation. Appl Catal B. 2022;317:121787. https://doi.org/10.1016/j.apcatb.2022.121787.

    Article  CAS  Google Scholar 

  45. Xia DH, Hu LL, Wang YC, Xu BH, Liao YH, He C, Ye LQ, Liang XL, Ye YH, Shu D. Immobilization of facet-engineered Ag3PO4 on mesoporous Al2O3 for efficient industrial waste gas purification with indoor LED illumination. Appl Catal B. 2019;256:117811. https://doi.org/10.1016/j.apcatb.2019.117811.

    Article  CAS  Google Scholar 

  46. Iwamoto M, Yahiro H, Mizuno N, Zhang WX, Mine Y, Furukawa H, Kagawa S. Removal of nitrogen monoxide through a novel catalytic process. 2. infrared study on surface reaction of nitrogen monoxide adsorbed on copper ion-exchanged ZSM-5 zeolites. J Phys Chem C. 1992;96:9360. https://doi.org/10.1021/j100202a055.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52161145409 and 21976116), and SAFEA of China (“Belt and Road” Innovative Exchange Foreign Expert Project, No. DL2023041004L). The authors acknowledge Researchers Supporting Project number (No. RSPD2024R691), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Yi Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7139 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, JYS., Ren, HT., Labidi, A. et al. Boosted photocatalytic removal of NO using direct Z-scheme UiO-66-NH2/Bi2MoO6 nanoflowers heterojunction: mechanism insight and humidity effect. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02670-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02670-4

Keywords

Navigation