Skip to main content

Advertisement

Log in

Sensing the Cardiac Environment: Exploiting Cues for Regeneration

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Recent pre-clinical and clinical studies indicate that certain exogenous stem cells and biomaterials can preserve cardiac tissue after myocardial infarction. Regarding stem cells, a growing body of data suggests that the short-term positive outcomes are mainly attributed to paracrine signaling mechanisms. The release of such factors is due to the cell’s ability to sense cardiac environmentally derived cues, though the exact feedback loops are still poorly understood. However, given the limited engraftment and survival of transplanted cells in the ischemic environment, the long-term clinical benefits of these therapies have not yet been realized. To overcome this, the long-term controlled delivery of bioactive factors using biomaterials is a promising approach. A major challenge has been the ability to develop timely and spatially controlled gradients of different cues, pivotal for the development and regeneration of tissues. In addition, given the complexity of the remodeling process after myocardial infarction, multiple factors may be required at distinct disease stages to maximize therapeutic outcomes. Therefore, novel smart materials that can sense the surrounding environment and generate cues through on demand mechanisms will be of major importance in the translation of these promising advanced therapies. This article reviews how the cardiac environment can mediate the release profiles of bioactive cues from cells and biomaterials and how the controlled delivery impacts heart regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98–102. doi:10.1126/science.1164680.

    Article  PubMed  CAS  Google Scholar 

  2. Jessup, M., & Brozena, S. (2003). Medical progress: Heart failure. The New England Journal of Medicine, 348(20), 2007–2018. doi:10.1056/NEJMra021498.

    Article  PubMed  Google Scholar 

  3. Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Executive summary: Heart Disease and Stroke Statistics-2010 Update. A report from the American Heart Association. Circulation, 121(7), 948–954. doi:10.1161/circulationaha.109.192666.

    Article  PubMed  Google Scholar 

  4. Zimmermann, W. H. (2009). Remuscularizing failing hearts with tissue engineered myocardium. Antioxidants & Redox Signaling, 11(8), 2011–2023. doi:10.1089/ars.2009.2467.

    Article  CAS  Google Scholar 

  5. Laflamme, M. A., & Murry, C. E. (2005). Regenerating the heart. Nature Biotechnology, 23(7), 845–856. doi:10.1038/nbt1117.

    Article  PubMed  CAS  Google Scholar 

  6. Segers, V. F. M., & Lee, R. T. (2010). Protein therapeutics for cardiac regeneration after myocardial infarction. Journal of Cardiovascular Translational Research, 3(5), 469–477. doi:10.1007/s12265-010-9207-5.

    Article  PubMed  Google Scholar 

  7. Dimmeler, S., Zeiher, A. M., & Schneider, M. D. (2005). Unchain my heart: The scientific foundations of cardiac repair. The Journal of Clinical Investigation, 115(3), 572–583. doi:10.1172/jci200524283.

    PubMed  CAS  Google Scholar 

  8. Alexander, J. M., & Bruneau, B. G. (2010). Lessons for cardiac regeneration and repair through development. Trends in Molecular Medicine, 16(9), 426–434. doi:10.1016/j.molmed.2010.06.003.

    Article  PubMed  Google Scholar 

  9. Vandervelde, S., van Luyn, M. J. A., Tio, R. A., & Harmsen, M. C. (2005). Signaling factors in stem cell-mediated repair of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 39(2), 363–376. doi:10.1016/j.yjmcc.2005.05.012.

    Article  PubMed  CAS  Google Scholar 

  10. Eaton, L. W., Weiss, J. L., Bulkley, B. H., Garrison, J. B., & Weisfeldt, M. L. (1979). Regional cardiac dilatation after acute myocardial-infarction—recognitior by 2-dimensional echocardiography. The New England Journal of Medicine, 300(2), 57–62. doi:10.1056/NEJM197905173002014.

    Article  PubMed  CAS  Google Scholar 

  11. Jugdutt, B. I. (2003). Ventricular remodeling after infarction and the extracellular collagen matrix—When is enough enough? Circulation, 108(11), 1395–1403. doi:10.1161/01.cir.0000085658.98621.49.

    Article  PubMed  Google Scholar 

  12. Ingber, D. E. (2002). Mechanical signalling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. CircRes, 91(10), 877–887. doi:10.1161/01.res.0000039537.73816.e5.

    CAS  Google Scholar 

  13. Dobaczewski, M., Gonzalez-Quesada, C., & Frangogiannis, N. G. (2009). The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. Journal of Molecular and Cellular Cardiology, 48(3), 504–511. doi:10.1016/j.yjmcc.2009.07.015.

    Article  PubMed  CAS  Google Scholar 

  14. Peterson, J. T., Li, H., Dillon, L., & Bryant, J. W. (2000). Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovascular Research, 46(2), 307–315. doi:10.1016/S0008-6363(00)00029-8.

    Article  PubMed  CAS  Google Scholar 

  15. Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31–47. doi:10.1016/S0008-6363(01)00434-5.

    Article  PubMed  CAS  Google Scholar 

  16. Yellon, D. M., & Hausenloy, D. J. (2007). Mechanisms of disease: Myocardial reperfusion injury. The New England Journal of Medicine, 357(11), 1121–1135. doi:10.1056/NEJMra071667.

    Article  PubMed  CAS  Google Scholar 

  17. Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia—a delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124–1136.

    Article  PubMed  CAS  Google Scholar 

  18. Lebuffe, G., Schumacker, P. T., Shao, Z. H., Anderson, T., Iwase, H., & Vanden Hoek, T. L. (2003). ROS and NO trigger early preconditioning: Relationship to mitochondrial K-ATP channel. Am J Physiol-Heart Circul Physiol, 284(1), H299–H308. doi:10.1152/ajpheart.00706.2002.

    CAS  Google Scholar 

  19. Garlid, K. D., Dos Santos, P., Xie, Z. J., Costa, A. D. T., & Paucek, P. (2003). Mitochondrial potassium transport: The role of the mitochondrial ATP-sensitive K + channel in cardiac function and cardioprotection. Biochim Biophys Acta-Bioenerg, 1606(1–3), 1–21. doi:10.1016/s0005-2728(03)00109-9.

    Article  CAS  Google Scholar 

  20. Mukherjee, R., Mingoia, J. T., Bruce, J. A., Austin, J. S., Stroud, R. E., Escobar, G. P., et al. (2006). Selective spatiotemporal induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 transcription after myocardial infarction. Am J Physiol-Heart Circul Physiol, 291(5), H2216–H2228. doi:10.1152/ajpheart.01343.2005.

    Article  CAS  Google Scholar 

  21. Vanhoutte, D., Schellings, M., Pinto, Y., & Heymans, S. (2006). Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: A temporal and spatial window. Cardiovascular Research, 69(3), 604–613. doi:10.1016/j.cardiores.2005.10.002.

    Article  PubMed  CAS  Google Scholar 

  22. Webb, C. S., Bonnema, D. D., Ahmed, S. H., Leonardi, A. H., McClure, C. D., Clark, L. L., et al. (2006). Specific temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction—Relation to left ventricular remodeling. Circulation, 114(10), 1020–1027. doi:10.1161/circulationaha.105.600353.

    Article  PubMed  CAS  Google Scholar 

  23. Matsumura, S., Iwanaga, S., Mochizuki, S., Okamoto, H., Ogawa, S., & Okada, Y. (2005). Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. The Journal of Clinical Investigation, 115(3), 599–609. doi:10.1172/jci200522304.

    PubMed  CAS  Google Scholar 

  24. Olivetti, G., Capasso, J. M., Sonnenblick, E. H., & Anversa, P. (1990). Side-to-side slippage of myocites participated in ventricular wall remodelling acutely after myocardial-infarction rats. CircRes, 67(1), 23–34.

    CAS  Google Scholar 

  25. Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385), 697–703. doi:10.1016/S0140-6736(03)14232-8.

    Article  PubMed  CAS  Google Scholar 

  26. Abbott, J. D., Huang, Y., Liu, D., Hickey, R., Krause, D. S., & Giordano, F. J. (2004). Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110(21), 3300–3305. doi:10.1161/01.cir.0000147780.30124.cf.

    Article  PubMed  Google Scholar 

  27. Kucia, M., Dawn, B., Hunt, G., Guo, Y. R., Wysoczynski, M., Majka, M., et al. (2004). Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. CircRes, 95(12), 1191–1199. doi:10.1161/01.RES.0000150856.47324.5b.

    CAS  Google Scholar 

  28. Ankrum, J., & Karp, J. M. (2010). Mesenchymal stem cell therapy: Two steps forward, one step back. Trends in Molecular Medicine, 16(5), 203–209. doi:10.1016/j.molmed.2010.02.005.

    Article  PubMed  Google Scholar 

  29. Yang, Z. Q., Zingarelli, B., & Szabo, C. (2000). Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation, 101(9), 1019–1026.

    PubMed  CAS  Google Scholar 

  30. Burchfield, J. S., Iwasaki, M., Koyanagi, M., Urbich, C., Rosenthal, N., Zeiher, A. M., et al. (2008). Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. CircRes, 103(2), 203–211. doi:10.1161/circresaha.108.178475.

    CAS  Google Scholar 

  31. Tziakas, D. N., Chalikias, G. K., Hatzinikolaou, H. I., Parissis, J. T., Papadopoulos, E. D., Trypsianis, G. A., et al. (2003). Anti-inflammatory cytokine profile in acute coronary syndromes: Behavior of interleukin-10 in association with serum metalloproteinases and proinflammatory cytokines. International Journal of Cardiology, 92(2–3), 169–175. doi:10.1016/s0167-5273(03)00084-6.

    Article  PubMed  Google Scholar 

  32. Krishnamurthy, P., Lambers, E., Verma, S., Thorne, T., Qin, G. J., Losordo, D. W., et al. (2010). Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice. The FASEB Journal, 24(7), 2484–2494. doi:10.1096/fj.09-149815.

    Article  PubMed  CAS  Google Scholar 

  33. Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74(2), 184–195. doi:10.1016/j.cardiores.2006.10.002.

    Article  PubMed  CAS  Google Scholar 

  34. Dewald, O., Zymek, P., Winkelmann, K., Koerting, A., Ren, G. F., Abou-Khamis, T., et al. (2005). CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. CircRes, 96(8), 881–889. doi:10.1161/01.RES.0000163017.13772.3a.

    CAS  Google Scholar 

  35. Eghbali, M., Tomek, R., Woods, C., & Bhambi, B. (1991). Cardiac fibroblast are predisposed to convert into myocyte phenotype—specific effect of transforming growth-factor-beta. Proceedings of the National Academy of Sciences of the United States of America, 88(3), 795–799. doi:10.1073/pnas.88.3.795.

    Article  PubMed  CAS  Google Scholar 

  36. Cleutjens, J. P. M., Verluyten, M. J. A., Smits, J. F. M., & Daemen, M. (1995). Collagen remodeling after myocardial-infarction in the rat-heart. Am J Pathol, 147(2), 325–338.

    PubMed  CAS  Google Scholar 

  37. van den Borne, S. W. M., Diez, J., Blankesteijn, W. M., Verjans, J., Hofstra, L., & Narula, J. (2009). Myocardial remodeling after infarction: The role of myofibroblasts. Nat Rev Cardiol, 7(1), 30–37. doi:10.1038/nrcardio.2009.199.

    Article  PubMed  Google Scholar 

  38. McCormick, R. J., Musch, T. I., Bergman, B. C., & Thomas, D. P. (1994). Regional differences in LV collagen accumulation and mature cross-linking after myocardial-infarction in rats. Am J Physiol, 266(1), H354–H359.

    PubMed  CAS  Google Scholar 

  39. Gnecchi, M., Zhang, Z. P., Ni, A. G., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219. doi:10.1161/circresaha.108.176826.

    Article  PubMed  CAS  Google Scholar 

  40. Hwang, H., & Kloner, R. A. (2010). Improving regenerating potential of the heart after myocardial infarction: Factor-based approach. Life Sciences, 86(13–14), 461–472. doi:10.1016/j.lfs.2010.01.004.

    Article  PubMed  CAS  Google Scholar 

  41. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297. doi:10.1016/S0092-8674(04)00045-5.

    Article  PubMed  CAS  Google Scholar 

  42. Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S. K., Choo, A., Chen, T. S., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–222. doi:10.1016/j.scr.2009.12.003.

    Article  PubMed  CAS  Google Scholar 

  43. Chen, T. S., Lai, R. C., Lee, M. M., Choo, A. B. H., Lee, C. N., & Lim, S. K. (2010). Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Research, 38(1), 215–224. doi:10.1093/nar/gkp857.

    Article  PubMed  CAS  Google Scholar 

  44. Hu SJ, Huang M, Li ZJ, Jia FJ, Ghosh ZM, Lijkwan MA, Fasanaro P, Sun N, Wang X, Li FM, Robbins RC, Wu JC MicroRNA-210 as a Novel Therapy for Treatment of Ischemic Heart Disease. Circulation 122 (11):S124-S131. doi:10.1161/circulationaha.109.928424

  45. van der Bogt, K. E. A., Sheikh, A. Y., Schrepfer, S., Hoyt, G., Cao, F., Ransohoff, K. J., et al. (2008). Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation, 118(14), S121–U166. doi:10.1161/circulationaha.107.759480.

    Article  PubMed  Google Scholar 

  46. Arminan, A., Gandia, C., Garcia-Verdugo, J. M., Lledo, E., Trigueros, C., Ruiz-Sauri, A., et al. (2009). Mesenchymal stem cells provide better results than hematopoietic precursors for the treatment of myocardial infarction. Journal of the American College of Cardiology, 55(20), 2244–2253. doi:10.1016/j.jacc.2009.08.092.

    Article  Google Scholar 

  47. Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Tsutsumi, Y., Ozono, R., et al. (2001). Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation, 104(9), 1046–1052. doi:10.1161/hc3501.093817.

    Article  PubMed  CAS  Google Scholar 

  48. Kraehenbuehl, T. P., Ferreira, L. S., Hayward, A. M., Nahrendorf, M., van der Vlies, A. J., Vasile, E., et al. (2010). Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials, 32(4), 1102–1109. doi:10.1016/j.biomaterials.2010.10.005.

    Article  PubMed  CAS  Google Scholar 

  49. Chimenti, I., Smith, R. R., Li, T. S., Gerstenblith, G., Messina, E., Giacomello, A., et al. (2010). Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. CircRes, 106(5), 971–U304. doi:10.1161/circresaha.109.210682.

    CAS  Google Scholar 

  50. Suzuki K, Murtuza B, Beauchamp JR, Brand NJ, Barton PJR, Varela-Carver A, Fukushima S, Coppen SR, Partridge TA, Yacoub MH (2004) Role of interleukin-1 beta in acute inflammation and graft death after cell transplantation to the heart. Circulation 110 (11):II219-II224. doi:10.1161/01.cir.0000138388.55416.06

  51. Shintani, Y., Fukushima, S., Varela-Carver, A., Lee, J., Coppen, S. R., Takahashi, K., et al. (2009). Donor cell-type specific paracrine effects of cell transplantation for post-infarction heart failure. Journal of Molecular and Cellular Cardiology, 47(2), 288–295. doi:10.1016/j.yjmcc.2009.05.009.

    Article  PubMed  CAS  Google Scholar 

  52. Mirotsou, M., Zhang, Z. Y., Deb, A., Zhang, L. N., Gnecchi, M., Noiseux, N., et al. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences of the United States of America, 104(5), 1643–1648. doi:10.1073/pnas.0610024104.

    Article  PubMed  CAS  Google Scholar 

  53. Wang, M. J., Tan, J. N., Wang, Y., Meldrum, K. K., Dinarello, C. A., & Meldrum, D. R. (2009). IL-18 binding protein-expressing mesenchymal stem cells improve myocardial protection after ischemia or infarction. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17499–17504. doi:10.1073/pnas.0908924106.

    Article  PubMed  CAS  Google Scholar 

  54. Li, W. Z., Ma, N., Ong, L. L., Nesselmann, C., Klopsch, C., Ladilov, Y., et al. (2007). Bc1-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25(8), 2118–2127. doi:10.1634/stemcells.2006-0771.

    Article  PubMed  CAS  Google Scholar 

  55. Wang, X. H., Zhao, T. M., Huang, W., Wang, T., Qian, J., Xu, M. F., et al. (2009). Hsp20-Engineered mesenchymal stem cells Are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells, 27(12), 3021–3031. doi:10.1002/stem.230.

    PubMed  CAS  Google Scholar 

  56. Huang, J., Zhang, Z. P., Guo, J. A., Ni, A. G., Deb, A., Zhang, L. N., et al. (2010). Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. CircRes, 106(11), 1753–U1189. doi:10.1161/circresaha.109.196030.

    CAS  Google Scholar 

  57. Pouyssegur, J., Dayan, F., & Mazure, N. M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 441(7092), 437–443. doi:10.1038/nature04871.

    Article  PubMed  CAS  Google Scholar 

  58. Chen, L. W., Tredget, E. E., Wu, P. Y. G., & Wu, Y. J. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PloS One, 3(4), 12. doi:10.1371/journal.pone.0001886, e1886.

    Article  CAS  Google Scholar 

  59. Wang, M. J., Crisostomo, P. R., Herring, C., Meldrum, K. K., & Meldrum, D. R. (2006). Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291(4), R880–R884. doi:10.1152/ajpregu.00280.2006.

    Article  PubMed  CAS  Google Scholar 

  60. Kelly, M. L., Wang, M. J., Crisostomo, P. R., Abarbanell, A. M., Herrmann, J. L., Weil, B. R., et al. (2009). TNF recepter 2, not TNF receptor 1, enhances mesenchymal stem cell-mediated cardiac protection following acute ischemia. Shock, 33(6), 602–607. doi:10.1097/SHK.0b013e3181cc0913.

    Google Scholar 

  61. Bao, C. Y., Guo, J., Zheng, M., Chen, Y., Lin, G. S., & Hu, M. Y. (2010). Enhancement of the survival of engrafted mesenchymal stem cells in the ischemic heart by TNFR gene transfection. Biochemistry and Cell Biology, 88(4), 629–634. doi:10.1139/010-018.

    Article  PubMed  CAS  Google Scholar 

  62. Chang, S. A., Lee, E. J., Kang, H. J., Zhang, S. Y., Kim, J. H., Li, L., et al. (2008). Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells: Effect of acute myocardial infarction on stem cell differentiation. Stem Cells, 26(7), 1901–1912. doi:10.1634/stemcells.2007-0708.

    Article  PubMed  CAS  Google Scholar 

  63. Lee, R. H., Pulin, A. A., Seo, M. J., Kota, D. J., Ylostalo, J., Larson, B. L., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5(1), 54–63. doi:10.1016/j.stem.2009.05.003.

    Article  PubMed  CAS  Google Scholar 

  64. Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499–3506. doi:10.1182/blood-2007-02-069716.

    Article  PubMed  CAS  Google Scholar 

  65. Meirelles, L. D., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5–6), 419–427. doi:10.1016/j.cytogfr.2009.10.002.

    Article  CAS  Google Scholar 

  66. Laterveer, L., Lindley, I. J. D., Hamilton, M. S., Willemze, R., & Fibbe, W. E. (1995). Interleukin-8 induces rapid mobilization of hematopoietic stem-cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood, 85(8), 2269–2275.

    PubMed  CAS  Google Scholar 

  67. Bocker, W. G., Docheva, D., Prall, W. C., Egea, V., Pappou, E., Rossmann, O., et al. (2008). IKK-2 is required for TNF-alpha-induced invasion and proliferation of human mesenchymal stem cells. Journal of Molecular Medicine, 86(10), 1183–1192. doi:10.1007/s00109-008-0378-3.

    Article  PubMed  CAS  Google Scholar 

  68. Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D. H., Iwaguro, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J, 18(14), 3964–3972.

    Article  PubMed  CAS  Google Scholar 

  69. Tang, Y. L., Zhu, W. Q., Cheng, M., Chen, L. J., Zhang, J., Sun, T., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. CircRes, 104(10), 1209–U1218. doi:10.1161/circresaha.109.197723.

    CAS  Google Scholar 

  70. Nakamuta, J. S., Danoviz, M. E., Marques, F. L. N., dos Santos, L., Becker, C., Goncalves, G. A., et al. (2009). Cell therapy attenuates cardiac dysfunction post myocardial infarction: Effect of timing, routes of injection and a fibrin scaffold. PloS One, 4(6), 10. doi:10.1371/journal.pone.0006005, e6005.

    Article  CAS  Google Scholar 

  71. Barbash, I. M., Chouraqui, P., Baron, J., Feinberg, M. S., Etzion, S., Tessone, A., et al. (2003). Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium—Feasibility, cell migration, and body distribution. Circulation, 108(7), 863–868. doi:10.1161/01.cir.0000084828.50310.6a.

    Article  PubMed  Google Scholar 

  72. Karp, J. M., & Teol, G. S. L. (2009). Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell, 4(3), 206–216. doi:10.1016/j.stem.2009.02.001.

    Article  PubMed  CAS  Google Scholar 

  73. Manning, M. C., Chou, D. K., Murphy, B. M., Payne, R. W., & Katayama, D. S. (2010). Stability of protein pharmaceuticals: An update. Pharmaceutical Research, 27(4), 544–575. doi:10.1007/s11095-009-0045-6.

    Article  PubMed  CAS  Google Scholar 

  74. Davis, M. E., Hsieh, P. C. H., Grodzinsky, A. J., & Lee, R. T. (2005). Custom design of the cardiac microenvironment with biomaterials. CircRes, 97(1), 8–15. doi:10.1161/01.res.0000173376.39447.01.

    CAS  Google Scholar 

  75. Ferreira, L., Pedroso, D. C., Vazão, H., & Gomes, R. S. (2010). Stem cell-based therapies for heart regeneration: What did the bench teach us? Cardiovascular & Hematological Disorders Drug Targets, 10(3), 173–185.

    CAS  Google Scholar 

  76. Freeman, I., & Cohen, S. (2009). The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials, 30(11), 2122–2131. doi:10.1016/j.biomaterials.2008.12.057.

    Article  PubMed  CAS  Google Scholar 

  77. Chen, F. M., Zhang, M., & Wu, Z. F. (2010). Toward delivery of multiple growth factors in tissue engineering. Biomaterials, 31(24), 6279–6308. doi:10.1016/j.biomaterials.2010.04.053.

    Article  PubMed  CAS  Google Scholar 

  78. Mukherjee, S., Venugopal, J. R., Ravichandran, R., Ramakrishna, S., & Raghunath, M. (2010). Multimodal biomaterial strategies for regeneration of infarcted myocardium. Journal of Materials Chemistry, 20(40), 8819–8831. doi:10.1039/c0jm00805b.

    Article  CAS  Google Scholar 

  79. Lindahl U, Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. In: International Review of Cell and Molecular Biology, Vol 276, vol 276. International Review of Cell and Molecular Biology. Elsevier Academic Press Inc, San Diego, pp 105–159. doi:10.1016/s1937-6448(09)76003-4

  80. Kraehenbuehl, T. P., Ferreira, L. S., Zammaretti, P., Hubbell, J. A., & Langer, R. (2009). Cell-responsive hydrogel for encapsulation of vascular cells. Biomaterials, 30(26), 4318–4324. doi:10.1016/j.biomaterials.2009.04.057.

    Article  PubMed  CAS  Google Scholar 

  81. Vazao, H., das Neves, R. P., Graos, M., & Ferreira, L. (2011). Towards the maturation and characterization of smooth muscle cells derived from human embryonic stem cells. PloS One, 6(3), 14. doi:10.1371/journal.pone.0017771.

    Article  CAS  Google Scholar 

  82. Ferreira, L. S., Gerecht, S., Shieh, H. F., Watson, N., Rupnick, M. A., Dallabrida, S. M., et al. (2007). Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle-like cells and form vascular networks in vivo. CircRes, 101(3), 286–294. doi:10.1161/circresaha.107.150201.

    CAS  Google Scholar 

  83. Kraehenbuehl, T. P., Zammaretti, P., Van der Vlies, A. J., Schoenmakers, R. G., Lutolf, M. P., Jaconi, M. E., et al. (2008). Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: Systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials, 29(18), 2757–2766. doi:10.1016/j.biomaterials.2008.03.016.

    Article  PubMed  CAS  Google Scholar 

  84. Sladek, T., Filkuka, J., Dolezel, S., Vasku, J., Hartmannova, B., & Travnickova, J. (1984). The border zone of the early myocardial-infarction in dogs—its characteristics and viability. Basic Research in Cardiology, 79(3), 344–349. doi:10.1007/BF01908035.

    Article  PubMed  CAS  Google Scholar 

  85. Sy, J. C., Seshadri, G., Yang, S. C., Brown, M., Oh, T., Dikalov, S., et al. (2008). Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nature Materials, 7(11), 863–869. doi:10.1038/nmat2299.

    Article  PubMed  CAS  Google Scholar 

  86. Gupta, P., Vermani, K., & Garg, S. (2002). Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discovery Today, 7(10), 569–579. doi:10.1016/S1359-6446(02)02255-9.

    Article  PubMed  CAS  Google Scholar 

  87. Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53(3), 321–339. doi:10.1016/S0169-409X(01)00203-4.

    Article  PubMed  CAS  Google Scholar 

  88. Lowman, A. M., Morishita, M., Kajita, M., Nagai, T., & Peppas, N. A. (1999). Oral delivery of insulin using pH-responsive complexation gels. Journal of Pharmaceutical Sciences, 88(9), 933–937. doi:10.1021/js980337n.

    Article  PubMed  CAS  Google Scholar 

  89. Miyata, T., Uragami, T., & Nakamae, K. (2002). Biomolecule-sensitive hydrogels. Advanced Drug Delivery Reviews, 54(1), 79–98. doi:10.1016/S0169-409X(01)00241-1.

    Article  PubMed  CAS  Google Scholar 

  90. Miyata, T., Asami, N., & Uragami, T. (1999). A reversibly antigen-responsive hydrogel. Nature, 399(6738), 766–769. doi:10.1038/21619.

    Article  PubMed  CAS  Google Scholar 

  91. Matsumoto, A., Yoshida, R., & Kataoka, K. (2004). Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules, 5(3), 1038–1045. doi:10.1021/bm0345413.

    Article  PubMed  CAS  Google Scholar 

  92. Wilson DS, Dalmasso G, Wang LX, Sitaraman SV, Merlin D, Murthy N Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 9 (11):923–928. doi:10.1038/nmat2859

  93. Broaders, K. E., Grandhe, S., & Frechet, J. M. J. (2011). A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. Journal of the American Chemical Society, 133(4), 756–758. doi:10.1021/ja110468v.

    PubMed  CAS  Google Scholar 

  94. Lee, K. Y., Peters, M. C., Anderson, K. W., & Mooney, D. J. (2000). Controlled growth factor release from synthetic extracellular matrices. Nature, 408(6815), 998–1000. doi:10.1038/35050141.

    Article  PubMed  CAS  Google Scholar 

  95. Labhasetwar, V., Underwood, T., Schwendeman, S. P., & Levy, R. J. (1995). Iontophoresis for modulation of cardiac drug-delivery in dogs. Proceedings of the National Academy of Sciences of the United States of America, 92(7), 2612–2616.

    Article  PubMed  CAS  Google Scholar 

  96. Zhao, X. H., Kim, J., Cezar, C. A., Huebsch, N., Lee, K., Bouhadir, K., et al. (2010). Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 67–72. doi:10.1073/pnas.1007862108.

    Article  PubMed  Google Scholar 

  97. Hausenloy, D. J., & Yellon, D. M. (2009). Cardioprotective growth factors. Cardiovascular Research, 83(2), 179–194. doi:10.1093/cvr/cvp062.

    Article  PubMed  CAS  Google Scholar 

  98. Kobayashi, H., Minatoguchi, S., Yasuda, S., Bao, N., Kawamura, I., Iwasa, M., et al. (2008). Post-infarct treatment with an erythropoietin-gelatin hydrogel drug delivery system for cardiac repair. Cardiovascular Research, 79(4), 611–620. doi:10.1093/cvr/cvn154.

    Article  PubMed  CAS  Google Scholar 

  99. Davis, M. E., Hsieh, P. C. H., Takahashi, T., Song, Q., Zhang, S. G., Kamm, R. D., et al. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8155–8160. doi:10.1073/pnas.0602877103.

    Article  PubMed  CAS  Google Scholar 

  100. Hao, X. J., Silva, E. A., Mansson-Broberg, A., Grinnemo, K. H., Siddiqui, A. J., Dellgren, G., et al. (2007). Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 75(1), 178–185. doi:10.1016/j.cardiores.2007.03.028.

    Article  PubMed  CAS  Google Scholar 

  101. Formiga, F. R., Pelacho, B., Garbayo, E., Abizanda, G., Gavira, J. J., Simon-Yarza, T., et al. (2010). Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model. Journal of Controlled Release, 147(1), 30–37. doi:10.1016/j.jconrel.2010.07.097.

    Article  PubMed  CAS  Google Scholar 

  102. Seliktar, D., Zisch, A. H., Lutolf, M. P., Wrana, J. L., & Hubbell, J. A. (2004). MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. Journal of Biomedical Materials Research. Part A, 68A(4), 704–716. doi:10.1002/jbm.a.20091.

    Article  CAS  Google Scholar 

  103. Silva, E. A., Kim, E. S., Kong, H. J., & Mooney, D. J. (2008). Material-based deployment enhances efficacy of endothelial progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14347–14352. doi:10.1073/pnas.0803873105.

    Article  PubMed  CAS  Google Scholar 

  104. Miyagi, Y., Chiu, L. L. Y., Cimini, M., Weisel, R. D., Radisic, M., & Li, R. K. (2010). Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials, 32(5), 1280–1290. doi:10.1016/j.biomaterials.2010.10.007.

    Article  PubMed  CAS  Google Scholar 

  105. Segers, V. F. M., Tokunou, T., Higgins, L. J., MacGillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116(15), 1683–1692. doi:10.1161/circulationaha.107.718718.

    Article  PubMed  CAS  Google Scholar 

  106. Calvillo, L., Latini, R., Kajstura, J., Leri, A., Anversa, P., Ghezzi, P., et al. (2003). Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4802–4806. doi:10.1073/pnas.0630444100.

    Article  PubMed  CAS  Google Scholar 

  107. Wang, T., Jiang, X. J., Lin, T., Ren, S., Li, X. Y., Zhang, X. Z., et al. (2009). The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials, 30(25), 4161–4167. doi:10.1016/j.biomaterials.2009.04.033.

    Article  PubMed  CAS  Google Scholar 

  108. Ruvinov E, Leor J, Cohen S The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32 (2):565–578. doi:10.1016/j.biomaterials.2010.08.097

  109. Fraidenraich, D., Stillwell, E., Romero, E., Wilkes, D., Manova, K., Basson, C. T., et al. (2004). Rescue of cardiac defects in Id knockout embryos by injection of embryonic stem cells. Science, 306(5694), 247–252.

    Article  PubMed  CAS  Google Scholar 

  110. Tokunou, T., Miller, R., Patwari, P., Davis, M. E., Segers, V. F. M., Grodzinsky, A. J., et al. (2008). Engineering insulin-like growth factor-1 for local delivery. The FASEB Journal, 22(6), 1886–1893. doi:10.1096/fj.07-100925.

    Article  PubMed  CAS  Google Scholar 

  111. Ota, T., Gilbert, T. W., Schwartzman, D., McTiernan, C. F., Kitajima, T., Ito, Y., et al. (2008). A fusion protein of hepatocyte growth factor enhances reconstruction of myocardium in a cardiac patch derived from porcine urinary bladder matrix. The Journal of Thoracic and Cardiovascular Surgery, 136(5), 1309–1317. doi:10.1016/j.jtcvs.2008.07.008.

    Article  PubMed  CAS  Google Scholar 

  112. Cao, Y. H., Hong, A., Schulten, H., & Post, M. J. (2005). Update on therapeutic neovascularization. Cardiovascular Research, 65(3), 639–648. doi:10.1016/j.cardiores.2004.11.020.

    Article  PubMed  CAS  Google Scholar 

  113. Sivakumar, B., Harry, L. E., & Paleolog, E. M. (2004). Modulating angiogenesis—More vs less. JAMA-J Am Med Assoc, 292(8), 972–977. doi:10.1001/jama.292.8.972.

    Article  CAS  Google Scholar 

  114. Le, K., Hwang, C. W., Tzafriri, A. R., Lovich, M., & Edelman, E. (2008). Local therapeutic angiogenesis is limited by microvascular clearance. Circulation, 118(18), S457–S457.

    Google Scholar 

  115. Dor, Y., Djonov, V., & Keshet, E. (2003). Induction of vascular networks in adult organs: Implications to proangiogenic therapy. In M. NilsenHamilton, Z. Werb, & E. Keshet (Eds.), Tissue remodeling, vol 995. Annals of the New York Academy of Sciences (pp. 208–215). New York: New York Acad Sciences.

    Google Scholar 

  116. Dor, Y., Djonov, V., Abramovitch, R., Itin, A., Fishman, G. I., Carmeliet, P., et al. (2002). Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. Embo J, 21(8), 1939–1947.

    Article  PubMed  CAS  Google Scholar 

  117. Thurston, G., Suri, C., Smith, K., McClain, J., Sato, T. N., Yancopoulos, G. D., et al. (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science, 286(5449), 2511–2514. doi:10.1126/science.286.5449.2511.

    Article  PubMed  CAS  Google Scholar 

  118. Hariawala, M. D., Horowitz, J. R., Esakof, D., Sheriff, D. D., Walter, D., Keyt, B., et al. (1996). VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J Surg Res, 63(1), 77–82. doi:10.1006/jsre.1996.0226.

    Article  PubMed  CAS  Google Scholar 

  119. Ozawa, C. R., Banfi, A., Glazer, N. L., Thurston, G., Springer, M. L., Kraft, P. E., et al. (2004). Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. The Journal of Clinical Investigation, 113(4), 516–527. doi:10.1172/jci200418420.

    PubMed  CAS  Google Scholar 

  120. Lee, R. J., Springer, M. L., Blanco-Bose, W. E., Shaw, R., Ursell, P. C., & Blau, H. M. (2000). VEGF gene delivery to myocardium—Deleterious effects of unregulated expression. Circulation, 102(8), 898–901.

    PubMed  CAS  Google Scholar 

  121. Henry, T. D., Annex, B. H., McKendall, G. R., Azrin, M. A., Lopez, J. J., Giordano, F. J., et al. (2003). Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation, 107(10), 1359–1365. doi:10.1161/01.cir.0000061911.47710.8a.

    Article  PubMed  CAS  Google Scholar 

  122. Laham, R. J., Sellke, F. W., Edelman, E. R., Pearlman, J. D., Ware, J. A., Brown, D. L., et al. (1999). Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery—Results of a phase I randomized, double-blind, placebo-controlled trial. Circulation, 100(18), 1865–1871.

    PubMed  CAS  Google Scholar 

  123. Ruel, M., Laham, R. J., Parker, J. A., Post, M. J., Ware, J. A., Simons, M., et al. (2002). Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. The Journal of Thoracic and Cardiovascular Surgery, 124(1), 28–34. doi:10.1067/mtc.2002.121974.

    Article  PubMed  CAS  Google Scholar 

  124. Simons, M., Annex, B. H., Laham, R. J., Kleiman, N., Henry, T., Dauerman, H., et al. (2002). Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2—Double-blind, randomized, controlled clinical trial. Circulation, 105(7), 788–793. doi:10.1161/hc0802.104407.

    Article  PubMed  CAS  Google Scholar 

  125. Cao, R. H., Brakenhielm, E., Pawliuk, R., Wariaro, D., Post, M. J., Wahlberg, E., et al. (2003). Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nature Medicine, 9(5), 604–613. doi:10.1038/nm848.

    Article  PubMed  CAS  Google Scholar 

  126. Hsieh, P. C. H., Davis, M. E., Lisowski, L. K., & Lee, R. T. (2006). Endothelial-cardiomyocyte interactions in cardiac development and repair. Annual Review of Physiology, 68, 51–66. doi:10.1146/annurev.physiol.68.040104.124629.

    Article  PubMed  CAS  Google Scholar 

  127. Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., et al. (2009). Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14990–14995. doi:10.1073/pnas.0812242106.

    Article  PubMed  CAS  Google Scholar 

  128. McQuibban, G. A., Butler, G. S., Gong, J. H., Bendall, L., Power, C., Clark-Lewis, I., et al. (2001). Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem, 276(47), 43503–43508. doi:10.1074/jbc.M107736200.

    Article  PubMed  CAS  Google Scholar 

  129. Zaruba, M. M., Theiss, H. D., Vallaster, M., Mehl, U., Brunner, S., David, R., et al. (2009). Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell, 4(4), 313–323. doi:10.1016/j.stem.2009.02.013.

    Article  PubMed  CAS  Google Scholar 

  130. Penn, M. S. (2009). Importance of the SDF-1:CXCR4 axis in myocardial repair. CircRes, 104(10), 1133–1135. doi:10.1161/circresaha.109.198929.

    CAS  Google Scholar 

  131. Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3(7), 687–694. doi:10.1038/ni813.

    Article  PubMed  CAS  Google Scholar 

  132. Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117(11), 1388–1396. doi:10.1161/circulationaha.107.727420.

    Article  PubMed  CAS  Google Scholar 

  133. Wall, S. T., Walker, J. C., Healy, K. E., Ratcliffe, M. B., & Guccione, J. M. (2006). Theoretical impact of the injection of material into the myocardium—A finite element model simulation. Circulation, 114(24), 2627–2635. doi:10.1161/circulationaha.106.657270.

    Article  PubMed  Google Scholar 

  134. Nelson, D. M., Ma, Z. W., Fujimoto, K. L., Hashizume, R., & Wagner, W. R. (2010). Intra-myocardial biomaterial injection therapy in the treatment of heart failure: Materials, outcomes and challenges. Acta Biomaterialia, 7(1), 1–15. doi:10.1016/j.actbio.2010.06.039.

    Article  PubMed  CAS  Google Scholar 

  135. Stastna, M., Chimenti, I., Marban, E., & Van Eyk, J. E. (2009). Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes. Proteomics, 10(2), 245–253. doi:10.1002/pmic.200900515.

    Article  CAS  Google Scholar 

  136. Siwik, D. A., Chang, D. L. F., & Colucci, W. S. (2000). Interleukin-1 beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. CircRes, 86(12), 1259–1265.

    CAS  Google Scholar 

  137. Finkel, M. S., Hoffman, R. A., Shen, L., Oddis, C. V., Simmons, R. L., & Hattler, B. G. (1993). Interleukin-6 (IL-6) as a mediator of stunned myocardium. The American Journal of Cardiology, 71(13), 1231–1232. doi:10.1016/0002-9149(93)90654-U.

    Article  PubMed  CAS  Google Scholar 

  138. Kukielka, G. L., Smith, C. W., Manning, A. M., Youker, K. A., Michael, L. H., & Entman, M. L. (1995). Induction of interleukin-6 synthesis in the myocardium—potential role is postreperfusion inflammatory injury. Circulation, 92(7), 1866–1875.

    PubMed  CAS  Google Scholar 

  139. Lacraz, S., Nicod, L. P., Chicheportiche, R., Welgus, H. G., & Dayer, J. M. (1995). IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. The Journal of Clinical Investigation, 96(5), 2304–2310. doi:10.1172/JCI118286.

    Article  PubMed  CAS  Google Scholar 

  140. Frangogiannis, N. G., Mendoza, L. H., Lindsey, M. L., Ballantyne, C. M., Michael, L. H., Smith, C. W., et al. (2000). IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol, 165(5), 2798–2808.

    PubMed  CAS  Google Scholar 

  141. Sun, M., Dawood, F., Wen, W. H., Chen, M. Y., Dixon, I., Kirshenbaum, L. A., et al. (2004). Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation, 110(20), 3221–3228. doi:10.1161/01.cir.0000147233.10318.23.

    Article  PubMed  CAS  Google Scholar 

  142. Yokoyama, T., Vaca, L., Rossen, R. D., Durante, W., Hazarika, P., & Mann, D. L. (1993). Cellular basis for the negative inotropic effects of tumor-necrosis-factor-alpha in the asult mammalian heart. The Journal of Clinical Investigation, 92(5), 2303–2312. doi:10.1172/JCI116834.

    Article  PubMed  CAS  Google Scholar 

  143. Frangogiannis, N. G., Lindsey, M. L., Michael, L. H., Youker, K. A., Bressler, R. B., Mendoza, L. H., et al. (1998). Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation, 98(7), 699–710.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Marie Curie-Reintegration Grant (FP7-People-2007-4-3-IRG; contract no. 230929), the MIT-Portugal program, the Portuguese Foundation for Science and Technology (FCT; PTDC/SA-BEB/098468/2008; PTDC/CTM/099659/2008) and Crioestaminal (project no. CENTRO-01-0202-FEDER-005476 “INJECTCORD”) to LF. This work was also supported by the National Institute of Health grants DE019191, HL095722, and HL097172 to JMK. The authors would also like to thank FCT for the fellowship to MNP (SFRH/BD/43013/2008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey M. Karp or Lino S. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, M.J.N., Carvalho, I.F., Karp, J.M. et al. Sensing the Cardiac Environment: Exploiting Cues for Regeneration. J. of Cardiovasc. Trans. Res. 4, 616–630 (2011). https://doi.org/10.1007/s12265-011-9299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9299-6

Keywords

Navigation