Skip to main content
Log in

IKK-2 is required for TNF-α-induced invasion and proliferation of human mesenchymal stem cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) can contribute to tissue repair by actively migrating to sites of tissue injury. However, the cellular and molecular mechanisms of MSC recruitment are largely unknown. The nuclear factor (NF)-κB pathway plays a pivotal role in regulating genes that influence cell migration, cell differentiation, inflammation, and proliferation. One of the major cytokines released at sites of injury is tumor necrosis factor-α (TNF-α), which is known to be a key regulator of the NF-κB pathway. Therefore, we hypothesized that TNF-α may lead to MSC invasion and proliferation by activation of the NF-κB pathway. TNF-receptor 1 and 2, NF-κB (p65), and IκB kinase 2 (IKK-2) are expressed in human MSCs (hMSCs). Stimulation of hMSCs with TNF-α caused a p65 translocation from the cytoplasm to nucleoplasm but did not change the expression profile of MSC markers. TNF-α strongly augmented the migration of hMSCs through the human extracellular matrix. Using lentiviral gene transfer, overexpressing a dominant-negative mutant of IKK-2 (dn-IKK-2) significantly blocked this effect. NF-κB target genes associated with migration (vascular cell adhesion molecule-1, CD44, and matrix metalloproteinase 9) were upregulated by TNF-α stimulation and blocked by dn-IKK-2. Moreover, using the bromodeoxyuridine assay, we showed that the inhibition of the NF-κB pathway caused a significant reduction in the basal proliferation rate. TNF-α stimulated the proliferation of hMSCs, whereas overexpression of dn-IKK-2 significantly blocked this effect. TNF-α led to the upregulated expression of the proliferation-associated gene cyclin D1. In conclusion, we demonstrated that the NF-κB pathway components, p65 and IKK-2, are expressed in hMSCs. Our data provide evidence that this signal transduction pathway is implicated in TNF-α-mediated invasion and proliferation of hMSCs. Therefore, hMSC recruitment to sites of tissue injury may, at least in part, be regulated by the NF-κB signal transduction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prockop MF (1997) Marrow stromal cells as stem cells for non-haematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  2. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  3. Docheva D, Popov C, Mutschler W et al (2007) Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med 11:1–17

    Article  CAS  Google Scholar 

  4. Ji JF, He BP, Dheen ST et al (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22:415–427

    Article  PubMed  CAS  Google Scholar 

  5. Wang L, Li Y, Chen X et al (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–117

    Article  PubMed  CAS  Google Scholar 

  6. Roufosse CA, Direkze NC, Otto WR et al (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597

    Article  PubMed  CAS  Google Scholar 

  7. Devine MJ, Mierisch CM, Jang E et al (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 20:1232–1239

    Article  PubMed  Google Scholar 

  8. Kawada H, Fujita J, Kinjo K et al (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104:3581–3587

    Article  PubMed  CAS  Google Scholar 

  9. Mackenzie TC, Flake AW (2001) Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis 27:601–604

    Article  PubMed  CAS  Google Scholar 

  10. Liechty K, MacKenzie T, Shaaban A et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  PubMed  CAS  Google Scholar 

  11. Kan I, Melamed E, Offen D (2005) Integral therapeutic potential of bone marrow mesenchymal stem cells. Curr Drug Targets 6:31–41

    Article  PubMed  CAS  Google Scholar 

  12. Fiedler J, Etzel N, Brenner RE (2004) To go or not to go: migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF. J Cell Biochem 93:990–998

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt A, Ladage DST, Klausman U et al (2006) Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 24:1750–1758

    Article  PubMed  CAS  Google Scholar 

  14. Fiedler J, Leucht F, Waltenberger J et al (2005) VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem Biophys Res Commun 334:561–568

    Article  PubMed  CAS  Google Scholar 

  15. Sordi V, Malosio ML, Marchesi F et al (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427

    Article  PubMed  CAS  Google Scholar 

  16. Ozaki Y, Nishimura M, Sekiya K et al (2007) Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev 16:119–129

    Article  PubMed  CAS  Google Scholar 

  17. Ries C, Egea V, Karow M et al (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109:4055–4063

    Article  PubMed  CAS  Google Scholar 

  18. Efron PA, Moldawer LL (2004) Cytokines and wound healing: the role of cytokine and anticytokine therapy in the repair response. J Burn Care Rehabil 25:149–160

    Article  PubMed  Google Scholar 

  19. Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404

    Article  PubMed  Google Scholar 

  20. Widera D, Mikenberg I, Elvers M et al (2006) Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci 7:64

    Article  PubMed  CAS  Google Scholar 

  21. Bargou RC, Emmerich F, Krappmann D et al (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100:2961–2969

    Article  PubMed  CAS  Google Scholar 

  22. Guttridge DC, Albanese C, Reuther JY et al (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19:5785–5799

    PubMed  CAS  Google Scholar 

  23. Hinz M, Krappmann D, Eichten A et al (1999) NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 19:2690–2698

    PubMed  CAS  Google Scholar 

  24. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  PubMed  CAS  Google Scholar 

  25. Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109(Suppl):S81–S96

    Article  PubMed  CAS  Google Scholar 

  26. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227

    Article  PubMed  CAS  Google Scholar 

  27. Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47:921–928

    Article  PubMed  CAS  Google Scholar 

  28. Baeuerle PA, Baltimore D (1988) I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242:540–546

    Article  PubMed  CAS  Google Scholar 

  29. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87:13–20

    Article  PubMed  CAS  Google Scholar 

  30. Chen Z, Hagler J, Palombella VJ et al (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin–proteasome pathway. Genes Dev 9:1586–1597

    Article  PubMed  CAS  Google Scholar 

  31. Böcker W, Rossmann O, Docheva D et al (2007) Quantitative polymerase chain reaction as a reliable method to determine functional lentiviral titer after ex vivo gene transfer in human mesenchymal stem cells. J Gene Med 9:585–595

    Article  PubMed  CAS  Google Scholar 

  32. Neth P, Ciccarella M, Egea V et al (2006) Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 24:1892–1903

    Article  PubMed  CAS  Google Scholar 

  33. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  34. Fahim MR, Halim SM, Kamel I (2004) Tumor necrosis factor alpha in patients with acute myocardial infarction. Egypt J Immunol 11:31–37

    PubMed  Google Scholar 

  35. Jiang J, Tian K, Chen H et al (1997) Kinetics of plasma cytokines and its clinical significance in patients with severe trauma. Chin Med J (Engl) 110:923–926

    CAS  Google Scholar 

  36. Gerstenfeld LC, Cho TJ, Kon T et al (2003) Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 18:1584–1592

    Article  PubMed  CAS  Google Scholar 

  37. Kon T, Cho TJ, Aizawa T et al (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16:1004–1014

    Article  PubMed  CAS  Google Scholar 

  38. Einhorn TA, Majeska RJ, Rush EB et al (1995) The expression of cytokine activity by fracture callus. J Bone Miner Res 10:1272–1281

    Article  PubMed  CAS  Google Scholar 

  39. Ruster B, Gottig S, Ludwig RJ et al (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108:3938–3944

    Article  PubMed  CAS  Google Scholar 

  40. Kang YJ, Jeon ES, Song HY et al (2005) Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem 95:1135–1145

    Article  PubMed  CAS  Google Scholar 

  41. Schmal H, Niemeyer P, Roesslein M et al (2007) Comparison of cellular functionality of human mesenchymal stromal cells and PBMC. Cytotherapy 9:69–79

    Article  PubMed  CAS  Google Scholar 

  42. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    Article  PubMed  CAS  Google Scholar 

  43. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433

    Article  PubMed  CAS  Google Scholar 

  44. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  45. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  46. Lee HY, Park KS, Kim MK et al (2005) A small compound that inhibits tumor necrosis factor-alpha-induced matrix metalloproteinase-9 upregulation. Biochem Biophys Res Commun 336:716–722

    Article  PubMed  CAS  Google Scholar 

  47. Lee SO, Jeong YJ, Yu MH et al (2006) Wogonin suppresses TNF-alpha-induced MMP-9 expression by blocking the NF-kappaB activation via MAPK signaling pathways in human aortic smooth muscle cells. Biochem Biophys Res Commun 351:118–125

    Article  PubMed  CAS  Google Scholar 

  48. Isacke CM, Yarwood H (2002) The hyaluronan receptor, CD44. Int J Biochem Cell Biol 34:718–721

    Article  PubMed  CAS  Google Scholar 

  49. Peng ST, Su CH, Kuo CC et al (2007) CD44 crosslinking-mediated matrix metalloproteinase-9 relocation in breast tumor cells leads to enhanced metastasis. Int J Oncol 31:1119–1126

    PubMed  CAS  Google Scholar 

  50. Bourguignon LY, Gunja-Smith Z, Iida N et al (1998) CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J Cell Physiol 176:206–215

    Article  PubMed  CAS  Google Scholar 

  51. Alaniz L, Garcia M, Cabrera P et al (2004) Modulation of matrix metalloproteinase-9 activity by hyaluronan is dependent on NF-kappaB activity in lymphoma cell lines with dissimilar invasive behavior. Biochem Biophys Res Commun 324:736–743

    Article  PubMed  CAS  Google Scholar 

  52. Zhu H, Mitsuhashi N, Klein A et al (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24:928–935

    Article  PubMed  CAS  Google Scholar 

  53. Meiler SE, Hung RR, Gerszten RE et al (2002) Endothelial IKK beta signaling is required for monocyte adhesion under laminar flow conditions. J Mol Cell Cardiol 34:349–359

    Article  PubMed  CAS  Google Scholar 

  54. Theiss AL, Simmons JG, Jobin C et al (2005) Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem 280:36099–36109

    Article  PubMed  CAS  Google Scholar 

  55. Mehrhof FB, Schmidt-Ullrich R, Dietz R et al (2005) Regulation of vascular smooth muscle cell proliferation: role of NF-kappaB revisited. Circ Res 96:958–964

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Prof. Dr. Med. Ulrich Koszinowski and Priv. Doz. Dr. med. Dr. rer. nat. Jürgen Haas (Max-von-Pettenkofer-Institute, Virology Section, University of Munich) for providing us the S2 laboratory and the intense discussion on lentiviral gene transfer and Martina Burggraf for PCR technical help and Dr. Eduard Fellows for assistance in the apoptosis assay. This project was supported by the AO Research Fund of the AO Foundation, Davos-Platz, Switzerland (AO grants: 05-B42 and 05-D83). We also appreciate the financial support of the Friedrich-Baur-Foundation (University of Munich) on lentiviral gene transfer in hMSCs, and Denitsa Docheva and Cvetan Popov acknowledge the financial support of the Bavarian Research Foundation (grant DPA-51/05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schieker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böcker, W., Docheva, D., Prall, W.C. et al. IKK-2 is required for TNF-α-induced invasion and proliferation of human mesenchymal stem cells. J Mol Med 86, 1183–1192 (2008). https://doi.org/10.1007/s00109-008-0378-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0378-3

Keywords

Navigation