Skip to main content

Advertisement

Log in

Protein Therapeutics for Cardiac Regeneration after Myocardial Infarction

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Although most medicines have historically been small molecules, many newly approved drugs are derived from proteins. Protein therapies have been developed for treatment of diseases in almost every organ system, including the heart. Great excitement has now arisen in the field of regenerative medicine, particularly for cardiac regeneration after myocardial infarction. Every year, millions of people suffer from acute myocardial infarction, but the adult mammalian myocardium has limited regeneration potential. Regeneration of the heart after myocardium infarction is therefore an exciting target for protein therapeutics. In this review, we discuss different classes of proteins that have therapeutic potential to regenerate the heart after myocardial infarction. Protein candidates have been described that induce angiogenesis, including fibroblast growth factors and vascular endothelial growth factors, although thus far clinical development has been disappointing. Chemotactic factors that attract stem cells, e.g., hepatocyte growth factor and stromal cell-derived factor-1, may also be useful. Finally, neuregulins and periostin are proteins that induce cell-cycle reentry of cardiomyocytes, and growth factors like IGF-1 can induce growth and differentiation of stem cells. As our knowledge of the biology of regenerative processes and the role of specific proteins in these processes increases, the use of proteins as regenerative drugs could develop as a cardiac therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3, e442.

    Article  PubMed  Google Scholar 

  2. White, H. D., & Chew, D. P. (2008). Acute myocardial infarction. Lancet, 372, 570–584.

    Article  CAS  PubMed  Google Scholar 

  3. Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451, 937–942.

    Article  CAS  PubMed  Google Scholar 

  4. Scott, D. W., & De Groot, A. S. (2010). Can we prevent immunogenicity of human protein drugs? Annals of the Rheumatic Diseases, 69, i72–i76.

    Article  CAS  PubMed  Google Scholar 

  5. Solá, R. J., & Griebenow, K. (2009). Effects of glycosylation on the stability of protein pharmaceuticals. Journal of Pharmaceutical Sciences, 98, 1223–1245.

    Article  PubMed  Google Scholar 

  6. Banai, S., Jaklitsch, M., Casscells, W., Shou, M., Shrivastav, S., Correa, R., et al. (1991). Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circulation Research, 69, 76–85.

    CAS  PubMed  Google Scholar 

  7. Pearlman, J. D., Hibberd, M. G., Chuang, M. L., Harada, K., Lopez, J. J., Gladstone, S. R., et al. (1995). Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Natural Medicines, 1, 1085–1089.

    Article  CAS  Google Scholar 

  8. van der Laan, A. M., Piek, J. J., & van Royen, N. (2009). Targeting angiogenesis to restore the microcirculation after reperfused MI. Nature Reviews Cardiology, 6, 515–523.

    Article  PubMed  Google Scholar 

  9. Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69(Suppl 3), 4–10.

    Article  CAS  PubMed  Google Scholar 

  10. Yanagisawa-Miwa, A., Uchida, Y., Nakamura, F., Tomaru, T., Kido, H., Kamijo, T., et al. (1992). Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science, 257, 1401–1403.

    Article  CAS  PubMed  Google Scholar 

  11. Epstein, S. E., Kornowski, R., Fuchs, S., & Dvorak, H. F. (2001). Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation, 104, 115–119.

    CAS  PubMed  Google Scholar 

  12. Henry, T. D., Rocha-Singh, K., Isner, J. M., Kereiakes, D. J., Giordano, F. J., Simons, M., et al. (2001). Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. American Heart Journal, 142, 872–880.

    Article  CAS  PubMed  Google Scholar 

  13. Henry, T. D., Annex, B. H., McKendall, G. R., Azrin, M. A., Lopez, J. J., Giordano, F. J., et al. (2003). The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation, 107, 1359–1365.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, R. J., Springer, M. L., Blanco-Bose, W. E., Shaw, R., Ursell, P. C., & Blau, H. M. (2000). VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation, 102, 898–901.

    CAS  PubMed  Google Scholar 

  15. Dulak, J., Zagorska, A., Wegiel, B., Loboda, A., & Jozkowicz, A. (2006). New strategies for cardiovascular gene therapy. Cell Biochemistry and Biophysics, 44, 31–42.

    Article  CAS  PubMed  Google Scholar 

  16. London, N., Whitehead, K., & Li, D. (2009). Endogenous endothelial cell signaling systems maintain vascular stability. Angiogenesis, 12, 149–158.

    Article  CAS  PubMed  Google Scholar 

  17. Byrne, A. M., Bouchier-Hayes, D. J., & Harmey, J. H. (2005). Angiogenic and cell survival functions of Vascular Endothelial Growth Factor (VEGF). Journal of Cellular and Molecular Medicine, 9, 777–794.

    Article  CAS  PubMed  Google Scholar 

  18. Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438, 932–936.

    Article  CAS  PubMed  Google Scholar 

  19. Scott, R. C., Rosano, J. M., Ivanov, Z., Wang, B., Chong, P. L.-G., Issekutz, A. C., et al. (2009). Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. The FASEB Journal, 23, 3361–3367.

    Article  CAS  PubMed  Google Scholar 

  20. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.

    Article  CAS  PubMed  Google Scholar 

  21. Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., et al. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.

    Article  CAS  PubMed  Google Scholar 

  22. Mouquet, F., Pfister, O., Jain, M., Oikonomopoulos, A., Ngoy, S., Summer, R., et al. (2005). Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circulation Research, 97, 1090–1092.

    Article  CAS  PubMed  Google Scholar 

  23. Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Natural Medicines, 13, 970–974.

    Article  CAS  Google Scholar 

  24. Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 98, 10344–10349.

    Article  CAS  PubMed  Google Scholar 

  25. Ince, H., Petzsch, M., Kleine, H. D., Eckard, H., Rehders, T., Burska, D., et al. (2005). Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: Final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation, 112, I-73–I-80.

    Article  Google Scholar 

  26. Engelmann, M. G., Theiss, H. D., Hennig-Theiss, C., Huber, A., Wintersperger, B. J., Werle-Ruedinger, A.-E., et al. (2006). Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: Final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. Journal of the American College of Cardiology, 48, 1712–1721.

    Article  CAS  PubMed  Google Scholar 

  27. Abdel-Latif, A., Bolli, R., Zuba-Surma, E. K., Tleyjeh, I. M., Hornung, C. A., & Dawn, B. (2008). Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. American Heart Journal, 156, 216–226. e219.

    Article  CAS  PubMed  Google Scholar 

  28. Harada, M., Qin, Y., Takano, H., Minamino, T., Zou, Y., Toko, H., et al. (2005). G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Natural Medicines, 11, 305–311.

    Article  CAS  Google Scholar 

  29. Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., et al. (1989). Molecular cloning and expression of human hepatocyte growth factor. Nature, 342, 440–443.

    Article  CAS  PubMed  Google Scholar 

  30. Boros, P., & Miller, C. M. (1995). Hepatocyte growth factor: a multifunctional cytokine. Lancet, 345, 293–295.

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., Matsuda, H., & Nakamura, T. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. The Journal of Clinical Investigation, 106, 1511–1519.

    Article  CAS  PubMed  Google Scholar 

  32. Urbanek, K., Rota, M., Cascapera, S., Bearzi, C., Nascimbene, A., De Angelis, A., et al. (2005). Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research, 97, 663–673.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y., Ahmad, N., Wani, M. A., & Ashraf, M. (2004). Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. Journal of Molecular and Cellular Cardiology, 37, 1041–1052.

    Article  CAS  PubMed  Google Scholar 

  34. Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. The Journal of Experimental Medicine, 185, 111–120.

    Article  CAS  PubMed  Google Scholar 

  35. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382, 635–638.

    Article  CAS  PubMed  Google Scholar 

  36. Zou, Y.-R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393, 595–599.

    Article  CAS  PubMed  Google Scholar 

  37. J-i, Y., Kusano, K. F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107, 1322–1328.

    Article  Google Scholar 

  38. Pillarisetti, K., & Gupta, S. (2001). Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1): SDF-1 α mRNA is selectively induced in rat model of myocardial infarction. Inflammation, 25, 293–300.

    Article  CAS  PubMed  Google Scholar 

  39. Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362, 697–703.

    Article  CAS  PubMed  Google Scholar 

  40. McQuibban, G. A., Butler, G. S., Gong, J. H., Bendall, L., Power, C., Clark-Lewis, I., et al. (2001). Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. The Journal of Biological Chemistry, 276, 43503–43508.

    Article  CAS  PubMed  Google Scholar 

  41. Segers, V. F., Tokunou, T., Higgins, L. J., MacGillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116, 1683–1692.

    Article  CAS  PubMed  Google Scholar 

  42. Schenk, S., Mal, N., Finan, A., Zhang, M., Kiedrowski, M., Popovic, Z., et al. (2007). Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells, 25, 245–251.

    Article  CAS  PubMed  Google Scholar 

  43. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.

    Article  CAS  PubMed  Google Scholar 

  44. Murry, C. E., & Lee, R. T. (2009). Development biology. Turnover after the fallout. Science, 324, 47–48.

    Article  CAS  PubMed  Google Scholar 

  45. Borchardt, T., & Braun, T. (2007). Cardiovascular regeneration in non-mammalian model systems: What are the differences between newts and man? Thrombosis and Haemostasis, 98, 311–318.

    CAS  PubMed  Google Scholar 

  46. Poss, K. D. (2007). Getting to the heart of regeneration in zebrafish. Seminars in Cell & Developmental Biology, 18, 36–45.

    Article  CAS  Google Scholar 

  47. Kuhn, B., del Monte, F., Hajjar, R. J., Chang, Y.-S., Lebeche, D., Arab, S., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Natural Medicines, 13, 962–969.

    Article  Google Scholar 

  48. Bersell, K., Arab, S., Haring, B., & Kühn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138, 257–270.

    Article  CAS  PubMed  Google Scholar 

  49. Yan, W., & Shao, R. (2006). Transduction of a Mesenchyme-specific gene periostin into 293 T cells induces cell invasive activity through epithelial-mesenchymal transformation. The Journal of Biological Chemistry, 281, 19700–19708.

    Article  CAS  PubMed  Google Scholar 

  50. Butcher, J. T., Norris, R. A., Hoffman, S., Mjaatvedt, C. H., & Markwald, R. R. (2007). Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. Developmental Biology, 302, 256–266.

    Article  CAS  PubMed  Google Scholar 

  51. Conway, S. J., & Molkentin, J. D. (2008). Periostin as a heterofunctional regulator of cardiac development and disease. Current Genomics, 9, 548–555.

    Article  CAS  PubMed  Google Scholar 

  52. Oka, T., Xu, J., Kaiser, R. A., Melendez, J., Hambleton, M., Sargent, M. A., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101, 313–321.

    Article  CAS  PubMed  Google Scholar 

  53. Lorts, A., Schwanekamp, J. A., Elrod, J. W., Sargent, M. A., & Molkentin, J. D. (2009). Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circulation Research, 104, e1–e7.

    Article  CAS  PubMed  Google Scholar 

  54. Lemmens, K., Doggen, K., & De Keulenaer, G. W. (2007). Role of Neuregulin-1/ErbB signaling in cardiovascular physiology and disease: Implications for therapy of heart failure. Circulation, 116, 954–960.

    Article  CAS  PubMed  Google Scholar 

  55. Lemmens, K., Segers, V. F. M., Demolder, M., & De Keulenaer, G. W. (2006). Role of Neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk. The Journal of Biological Chemistry, 281, 19469–19477.

    Article  CAS  PubMed  Google Scholar 

  56. Mourkioti, F., & Rosenthal, N. (2005). IGF-1, inflammation and stem cells: Interactions during muscle regeneration. Trends in Immunology, 26, 535–542.

    Article  CAS  PubMed  Google Scholar 

  57. Fazio, S., Palmieri, E., Biondi, B., Cittadini, A., & Sacca, L. (2000). The role of the GH-IGF-I axis in the regulation of myocardial growth: from experimental models to human evidence. European Journal of Endocrinology, 142, 211–216.

    Article  CAS  PubMed  Google Scholar 

  58. Padin-Iruegas, M. E., Misao, Y., Davis, M. E., Segers, V. F., Esposito, G., Tokunou, T., et al. (2009). Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation, 120, 876–887.

    Article  CAS  PubMed  Google Scholar 

  59. Rota, M., Padin-Iruegas, M. E., Misao, Y., De Angelis, A., Maestroni, S., Ferreira-Martins, J., et al. (2008). Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Research, 103, 107–116.

    Article  CAS  PubMed  Google Scholar 

  60. Tulloch, N. L., Pabon, L., & Murry, C. E. (2008). Get with the (Re)program: Cardiovascular potential of skin-derived induced pluripotent stem cells. Circulation, 118, 472–475.

    Article  PubMed  Google Scholar 

  61. Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.

    Article  PubMed  Google Scholar 

  62. Narazaki, G., Uosaki, H., Teranishi, M., Okita, K., Kim, B., Matsuoka, S., et al. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118, 498–506.

    Article  PubMed  Google Scholar 

  63. Filipczyk, A., Passier, R., Rochat, A., & Mummery, C. (2007). Cardiovascular development: Towards biomedical applicability. Cellular and Molecular Life Sciences, 64, 704–718.

    Article  CAS  PubMed  Google Scholar 

  64. Klocke, R., Kuhlmann, M. T., Scobioala, S., Schabitz, W. R., & Nikol, S. (2008). Granulocyte colony-stimulating factor (G-CSF) for cardio- and cerebrovascular regenerative applications. Current Medicinal Chemistry, 15, 968–977.

    Article  CAS  PubMed  Google Scholar 

  65. Kang, J. S., DeLuca, P. P., & Lee, K. C. (2009). Emerging PEGylated drugs. Expert Opinion on Emerging Drugs, 14, 363–380.

    Article  CAS  PubMed  Google Scholar 

  66. Obana, M., Maeda, M., Takeda, K., Hayama, A., Mohri, T., Yamashita, T., et al. (2010). Therapeutic activation of signal transducer and activator of transcription 3 by Interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation, 121, 684–691.

    Article  CAS  PubMed  Google Scholar 

  67. Seki, K., Sanada, S., Kudinova, A. Y., Steinhauser, M. L., Handa, V., Gannon, J., et al. (2009). Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail, 2, 684–691.

    Article  CAS  PubMed  Google Scholar 

  68. Kondo, K., Shibata, R., Unno, K., Shimano, M., Ishii, M., Tetsutaro, K., et al. (2010). Impact of a single intracoronary administration of adiponectin on myocardial ischemia/reperfusion injury in a pig model. Circ Cardiovasc Interv, 3(2), 166–173.

    Article  CAS  PubMed  Google Scholar 

  69. Bock-Marquette, I., Saxena, A., White, M. D., Michael DiMaio, J., & Srivastava, D. (2004). Thymosin [beta]4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature, 432, 466–472.

    Article  CAS  PubMed  Google Scholar 

  70. Sasaki, T., Fukazawa, R., Ogawa, S., Kanno, S., Nitta, T., Ochi, M., et al. (2007). Stromal cell-derived factor-1; improves infarcted heart function through angiogenesis in mice. Pediatrics International, 49, 966–971.

    Article  PubMed  Google Scholar 

  71. Saxena, A., Fish, J. E., White, M. D., Yu, S., Smyth, J. W. P., Shaw, R. M., et al. (2008). Stromal cell-derived factor-1{alpha} is cardioprotective after myocardial infarction. Circulation, 117, 2224–2231.

    Article  CAS  PubMed  Google Scholar 

  72. Hsieh, P. C. H., Davis, M. E., Gannon, J., MacGillivray, C., & Lee, R. T. (2006). Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. The Journal of Clinical Investigation, 116, 237–248.

    Article  CAS  PubMed  Google Scholar 

  73. Zaruba, M.-M., Huber, B. C., Brunner, S., Deindl, E., David, R., Fischer, R., et al. (2008). Parathyroid hormone treatment after myocardial infarction promotes cardiac repair by enhanced neovascularization and cell survival. Cardiovascular Research, 77, 722–731.

    Article  CAS  PubMed  Google Scholar 

  74. Sugano, Y., Anzai, T., Yoshikawa, T., Maekawa, Y., Kohno, T., Mahara, K., et al. (2005). Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovascular Research, 65, 446–456.

    Article  CAS  PubMed  Google Scholar 

  75. Hasegawa, H., Takano, H., Iwanaga, K., Ohtsuka, M., Qin, Y., Niitsuma, Y., et al. (2006). Cardioprotective effects of granulocyte colony-stimulating factor in swine with chronic myocardial ischemia. Journal of the American College of Cardiology, 47, 842–849.

    Article  CAS  PubMed  Google Scholar 

  76. van der Meer, P., Lipsic, E., Henning, R. H., Boddeus, K., van der Velden, J., Voors, A. A., et al. (2005). Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. Journal of the American College of Cardiology, 46, 125–133.

    Article  PubMed  Google Scholar 

  77. Battler, A., Scheinowitz, M., Bor, A., Hasdai, D., Vered, Z., Di Segni, E., et al. (1993). Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. Journal of the American College of Cardiology, 22, 2001–2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

Vincent Segers and Richard Lee are founders of Provasculon Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Lee.

Additional information

Supported by grants from NIH: HL092930 and AG032977/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segers, V.F.M., Lee, R.T. Protein Therapeutics for Cardiac Regeneration after Myocardial Infarction. J. of Cardiovasc. Trans. Res. 3, 469–477 (2010). https://doi.org/10.1007/s12265-010-9207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9207-5

Keywords

Navigation