Skip to main content

Advertisement

Log in

Spirulina-Based Biostimulants for Sustainable Agriculture: Yield Improvement and Market Trends

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The tension between a growing food global demand, rising environmental impacts of agricultural intensification, and the uncertainty of future climate changes highlight a crucial need for sustainable agricultural practices to improve crop productivity. One promising way is the use of plant biostimulants that act at several levels of the agricultural ecosystem to improve crop yield. Spirulina spp., the most produced microalgae, is characterized by a rapid growth and an interesting composition which make it the first choice for different applications mainly nutritional ones. Recently, Spirulina attracted the attention of researchers and agroindustries as a renewable resource for agricultural inputs. Indeed, besides its naturally fertilizing potential, Spirulina is able to release various biologically active molecules (polysaccharides, amino acids, phytohormones, etc.) that promote plant growth and increase tolerance to biotic and abiotic stresses. Spirulina-based biostimulants are applied by several methods depending on the objective and crop needs. Nevertheless, their application at large scale is still limited by various factors including cost. In this way, the current review summarizes previous utilizations of Spirulina-based products. It highlights their efficiency for various purposes, determines the factors limiting their use, as well as future development priorities and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Colla G, Rouphael Y (2020) Microalgae: new source of plant biostimulants. Agronomy 10:1240. https://doi.org/10.3390/agronomy10091240

    Article  Google Scholar 

  2. Rouphael Y, Colla G (2020) Toward a sustainable agriculture through plant biostimulants: from experimental data to practical applications. Agronomy 10:1461. https://doi.org/10.3390/agronomy10101461

    Article  CAS  Google Scholar 

  3. Chittora D, Meena M, Barupal T et al (2020) Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem Biophys Rep 22:100737. https://doi.org/10.1016/j.bbrep.2020.100737

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mógor ÁF, de Amatussi J, O, Mógor G, Lara GB de, (2018) Bioactivity of cyanobacterial biomass related to amino acids induces growth and metabolic changes on seedlings and yield gains of organic red beet. Am J Plant Sci 09:966. https://doi.org/10.4236/ajps.2018.95074

    Article  CAS  Google Scholar 

  5. Ronga D, Biazzi E, Parati K et al (2019) Microalgal biostimulants and biofertilisers in crop productions. Agronomy 9:192. https://doi.org/10.3390/agronomy9040192

    Article  CAS  Google Scholar 

  6. Gunupuru LR, Patel JS, Sumarah MW et al (2019) A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. PLoS ONE 14:e0220562. https://doi.org/10.1371/journal.pone.0220562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kapoore RV, Wood EE, Llewellyn CA (2021) Algae biostimulants: a critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol Adv 49:107754. https://doi.org/10.1016/j.biotechadv.2021.107754

    Article  CAS  PubMed  Google Scholar 

  8. Dmytryk A, Chojnacka K (2018) Algae as fertilizers, biostimulants, and regulators of plant growth. In: Chojnacka K, Wieczorek PP, Schroeder G, Michalak I (eds) Algae biomass: characteristics and applications: towards algae-based products. Springer International Publishing, Cham, pp 115–122

    Chapter  Google Scholar 

  9. El-Sayed SAA (2018) Effect of potassium fertilization levels and algae extract on growth, bulb yield and quality of onion (Allium cepa L.). Middle East J 7:625–638

    Google Scholar 

  10. Uthirapandi V, Suriya S, Boomibalagan P et al (2018) Bio-fertilizer potential of seaweed liquid extracts of marine macro algae on growth and biochemical parameters of Ocimum sanctum. J Pharmacogn Phytochem 7:3528–3532

    CAS  Google Scholar 

  11. Carillo P, Ciarmiello LF, Woodrow P et al (2020) Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. Biology 9:253. https://doi.org/10.3390/biology9090253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406. https://doi.org/10.1016/j.biortech.2005.10.014

    Article  CAS  PubMed  Google Scholar 

  13. Ali O, Ramsubhag A, Jayaraman J (2021) Biostimulant properties of seaweed extracts in plants: implications towards sustainable crop production. Plants 10:531. https://doi.org/10.3390/plants10030531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bayona-Morcillo PJ, Plaza BM, Gómez-Serrano C et al (2020) Effect of the foliar application of cyanobacterial hydrolysate (Arthrospira platensis) on the growth of Petunia x hybrida under salinity conditions. J Appl Phycol 32:4003–4011. https://doi.org/10.1007/s10811-020-02192-3

    Article  CAS  Google Scholar 

  15. Zhou Y, Bao J, Zhang D et al (2020) Effect of heterocystous nitrogen-fixing cyanobacteria against rice sheath blight and the underlying mechanism. Appl Soil Ecol 153:103580. https://doi.org/10.1016/j.apsoil.2020.103580

    Article  Google Scholar 

  16. Alvarez AL, Weyers SL, Goemann HM et al (2021) Microalgae, soil and plants: a critical review of microalgae as renewable resources for agriculture. Algal Res 54:102200. https://doi.org/10.1016/j.algal.2021.102200

    Article  Google Scholar 

  17. Joshi H, Shourie A, Singh A (2020) Chapter 25 - Cyanobacteria as a source of biofertilizers for sustainable agriculture. In: Singh PK, Kumar A, Singh VK, Shrivastava AK (eds) Advances in Cyanobacterial Biology. Academic Press, pp 385–396

    Chapter  Google Scholar 

  18. Gemin LG, Mógor ÁF, De Oliveira AJ, Mógor G (2019) Microalgae associated to humic acid as a novel biostimulant improving onion growth and yield. Sci Hortic 256:108560. https://doi.org/10.1016/j.scienta.2019.108560

    Article  CAS  Google Scholar 

  19. Dineshkumar R, Duraimurugan M, Sharmiladevi N et al (2020) Microalgal liquid biofertilizer and biostimulant effect on green gram (Vigna radiata L) an experimental cultivation. Biomass Convers Biorefinery 12:3007–3027. https://doi.org/10.1007/s13399-020-00857-0

    Article  CAS  Google Scholar 

  20. Plaza BM, Gómez-Serrano C, Acién-Fernández FG, Jimenez-Becker S (2018) Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. J Appl Phycol 30:2359–2365. https://doi.org/10.1007/s10811-018-1427-0

    Article  CAS  Google Scholar 

  21. Arahou F, Hassikou R, Arahou M et al (2021) Influence of culture conditions on Arthrospira platensis growth and valorization of biomass as input for sustainable agriculture. Aquac Int 29:2009–2020. https://doi.org/10.1007/s10499-021-00730-5

    Article  CAS  Google Scholar 

  22. Fais G, Manca A, Bolognesi F et al (2022) Wide range applications of Spirulina: from earth to space missions. Mar Drugs 20:299. https://doi.org/10.3390/md20050299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prisa D, Prisa D (2019) Possible use of Spirulina and klamath algae as biostimulants in Portulacagrandiflora (Moss Rose). World J Adv Res Rev 3:001–006. https://doi.org/10.30574/wjarr.2019.3.2.0053

    Article  CAS  Google Scholar 

  24. Selem E (2019) Physiological effects of Spirulina platensis in salt stressed Vicia faba L. Plants. Egypt J Bot 59:185–194. https://doi.org/10.21608/ejbo.2018.3836.1178

    Article  Google Scholar 

  25. Ertani A, Nardi S, Francioso O et al (2019) Effects of two protein hydrolysates obtained from chickpea (Cicer arietinum l.) and Spirulina platensis on Zea mays (l.) plants. Front Plant Sci 10:954. https://doi.org/10.3389/fpls.2019.00954

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shedeed ZA, Gheda S, Elsanadily S et al (2022) Spirulina platensis biofertilization for enhancing growth, photosynthetic capacity and yield of Lupinus luteus. Agriculture 12:781. https://doi.org/10.3390/agriculture12060781

    Article  CAS  Google Scholar 

  27. Hlima HB, Bohli T, Kraiem M et al (2019) Combined effect of Spirulina platensis and Punica granatum peel extacts: phytochemical content and antiphytophatogenic activity. Appl Sci 9:5475. https://doi.org/10.3390/app9245475

    Article  CAS  Google Scholar 

  28. Aly MS, Esawy MA (2008) Evaluation of Spirulina platensis as bio stimulator for organic farming systems. J Gen Eng Biotechnol 6:1–7

    Google Scholar 

  29. Wuang SC, Khin MC, Chua PQD, Luo YD (2016) Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res 15:59–64. https://doi.org/10.1016/j.algal.2016.02.009

    Article  Google Scholar 

  30. Marrez DA, Naguib MM, Sultan YY et al (2014) Evaluation of chemical composition for Spirulina platensis in different culture media. Res J Pharm Biol Chem Sci 5:1161–1171

    Google Scholar 

  31. Lafarga T, Sánchez-Zurano A, Villaró S et al (2021) Industrial production of Spirulina as a protein source for bioactive peptide generation. Trends Food Sci Technol 116:176–185. https://doi.org/10.1016/j.tifs.2021.07.018

    Article  CAS  Google Scholar 

  32. Lupatini AL, Colla LM, Canan C, Colla E (2017) Potential application of microalga Spirulina platensis as a protein source. J Sci Food Agric 97:724–732. https://doi.org/10.1002/jsfa.7987

    Article  CAS  PubMed  Google Scholar 

  33. Silva SC, Ferreira IC, Dias MM, Barreiro MF (2020) Microalgae-derived pigments: a 10-year bibliometric review and industry and market trend analysis. Molecules 25:3406. https://doi.org/10.3390/molecules25153406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morsy N (2019) Productivity and quality of kohlrabi grown in a newly reclaimed sandy soil using organic and mineral-n fertilizer regimes with or without spraying of Spirulinaplatensis extract. Egypt J Hortic 46:169–178. https://doi.org/10.21608/ejoh.2019.12503.1105

    Article  Google Scholar 

  35. Ramírez-Rodrigues MM, Estrada-Beristain C, Metri-Ojeda J et al (2021) Spirulina platensis protein as sustainable ingredient for nutritional food products development. Sustainability 13:6849. https://doi.org/10.3390/su13126849

    Article  CAS  Google Scholar 

  36. Habib MAB, Huntington TC, Hasan MR (2008) A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and Agriculture Organization of the United Nations, Rome, pp 33

  37. Grosshagauer S, Kraemer K, Somoza V (2020) The true value of Spirulina. J Agric Food Chem 68:4109–4115. https://doi.org/10.1021/acs.jafc.9b08251

    Article  CAS  PubMed  Google Scholar 

  38. Liestianty D, Rodianawati I, Arfah RA et al (2019) Nutritional analysis of Spirulina sp to promote as superfood candidate. IOP Conf Ser Mater Sci Eng 509:012031. https://doi.org/10.1088/1757-899X/509/1/012031

    Article  CAS  Google Scholar 

  39. Seghiri R, Kharbach M, Essamri A (2019) Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. J Food Qual 2019:e3707219. https://doi.org/10.1155/2019/3707219

    Article  CAS  Google Scholar 

  40. Jung F, Krüger-Genge A, Waldeck P, Küpper J-H (2019) Spirulina platensis, a super food. J Cell Biotechnol 5:43–54. https://doi.org/10.3233/JCB-189012

    Article  Google Scholar 

  41. Amin GH, Al-Gendy AA, Yassin MEA, Abdel-Motteleb A (2009) Effect of Spirulina platensis extract on growth, phenolic compounds and antioxidant activities of Sisymbrium irio callus and cell suspension cultures. Aust J Basic Appl Sci 3:2097–2110

    CAS  Google Scholar 

  42. Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12:395–400

    Article  Google Scholar 

  43. Guedes WA, Araújo RHCR, Rocha JLA et al (2018) Production of papaya seedlings using Spirulina platensis as a biostimulant applied on leaf and root. J Exp Agric Int 28:1–9. https://doi.org/10.9734/JEAI/2018/45053

    Article  Google Scholar 

  44. Yassen AA, Essa EM, Zaghloul SM (2019) The Role of vermicompost and foliar spray of Spirulinaplatensis extract on vegetative growth, yield and nutrition status of lettuce plant under sandy soil. J Agric Biol Sci 14:1–7. https://doi.org/10.22587/rjabs.2019.14.1.1

    Article  CAS  Google Scholar 

  45. Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306. https://doi.org/10.3390/agronomy9060306

    Article  CAS  Google Scholar 

  46. Rouphael Y, Colla G (2020) Biostimulants in agriculture. Front. Plant Sci 6:671. https://doi.org/10.3389/fpls.2020.00040

    Article  Google Scholar 

  47. Thinh NQ (2021) Influences of seed priming with Spirulina platensis extract on seed quality properties in black gram (Vigna mungo L.). Vietnam J Sci Technol Eng 63:36–41

    Article  Google Scholar 

  48. Seifikalhor M, Hassani SB, Aliniaeifard S (2020) Seed priming by cyanobacteria (Spirulina platensis) and salep gum enhances tolerance of maize plant against cadmium toxicity. J Plant Growth Regul 39:1009–1021. https://doi.org/10.1007/s00344-019-10038-7

    Article  CAS  Google Scholar 

  49. Raghunandan BL, Vyas RV, Patel HK, Jhala YK (2019) Perspectives of seaweed as organic fertilizer in agriculture. Soil fertility management for sustainable development. Springer, pp 267–289

    Chapter  Google Scholar 

  50. Bahmani Jafarlou M, Pilehvar B, Modarresi M, Mohammadi M (2021) Performance of algae extracts priming for enhancing seed germination indices and salt tolerance in Calotropis procera (aiton) W.T. Iran J Sci Technol Trans Sci 45:493–502. https://doi.org/10.1007/s40995-021-01071-x

    Article  Google Scholar 

  51. Mógor ÁF, Ördög V, Lima GPP et al (2018) Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J Appl Phycol 30:453–460. https://doi.org/10.1007/s10811-017-1242-z

    Article  CAS  Google Scholar 

  52. Hassan SM, Ashour M, Soliman AAF (2017) Anticancer activity, antioxidant activity, mineral contents, vegetative and yield of Eruca sativa using foliar application of autoclaved cellular extract of Spirulinaplatensis extract, comparing to n-p-k fertilizers. J Plant Prod 8:529–536. https://doi.org/10.21608/jpp.2017.40056

    Article  Google Scholar 

  53. Aung KLN (2011) Effect of Spirulina biofertilizer suspension on growth and yield of Vigna radiata (L.) Wilczek. Univ Res J 4:351–363

    Google Scholar 

  54. Enan S, El-Saady AM, El-Sayed AB (2016) Impact of foliar feeding with alga extract and boron on yield and quality of sugar beet grown in sandy soil. Egypt J Agronematol 38:319–336. https://doi.org/10.21608/agro.2016.622

    Article  Google Scholar 

  55. Rachidi F, Benhima R, Sbabou L, El Arroussi H (2020) Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnol Rep 25:e00426. https://doi.org/10.1016/j.btre.2020.e00426

    Article  Google Scholar 

  56. Godlewska K, Michalak I, Pacyga P et al (2019) Potential applications of cyanobacteria: Spirulina platensis filtrates and homogenates in agriculture. World J Microbiol Biotechnol 35:1–18. https://doi.org/10.1007/s11274-019-2653-6

    Article  CAS  Google Scholar 

  57. Yanni YG, Elashmouny AA, Elsadany AY (2020) Differential response of cotton growth, yield and fiber quality to foliar application of Spirulina platensis and urea fertilizer. Asian J Adv Agric Res 12:29–40. https://doi.org/10.9734/ajaar/2020/v12i130072

    Article  Google Scholar 

  58. Raupp J, Oltmanns M (2006) Farmyard manure, plant based organic fertilisers, inorganic fertiliser-which sustains soil organic matter best. Asp Appl Biol 79:273–276

    Google Scholar 

  59. Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381. https://doi.org/10.1007/s00425-008-0772-7

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi T, Kakehi J-I (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6. https://doi.org/10.1093/aob/mcp259

    Article  CAS  PubMed  Google Scholar 

  61. Hegazi AZ, Mostafa SS, Ahmed HM (2010) Influence of different cyanobacterial application methods on growth and seed production of common bean under various levels of mineral nitrogen fertilization. Nat Sci 8:183–194

    Google Scholar 

  62. El-Habet HBI, Elsadany AY (2020) Maximize growth and productivity of rice by using n2-fixing Anabaena oryzae and Spirulinaplatensis extract. J Plant Prod 11:1105–1114. https://doi.org/10.21608/jpp.2020.130933

    Article  Google Scholar 

  63. Refaay DA, El-Marzoki EM, Abdel-Hamid MI, Haroun SA (2021) Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. J Appl Phycol 33:3807–3815. https://doi.org/10.1007/s10811-021-02584-z

    Article  CAS  Google Scholar 

  64. Wafaa AE-A, Hendawy SF, Hamed ES, Toaima WIM (2017) Effect of planting dates, organic fertilization and foliar spray of algae extract on productivity of Dutch fennel plants under Sinai conditions. J Med Plants 5:327–334

    Google Scholar 

  65. Anitha L, Bramari GS, Kalpana P (2016) Effect of supplementation of Spirulina platensis to enhance the zinc status in plants of Amaranthus gangeticus, Phaseolus aureus and tomato. Adv Biosci Biotechnol 7:289–299. https://doi.org/10.4236/abb.2016.76027

    Article  CAS  Google Scholar 

  66. de la Nunez-Vazquez MC, Delgado-Acosta C, Lopez-Padron I et al (2020) New biostimulant and its influence on the production of common beans. Cultiv Trop 41:e08

    Google Scholar 

  67. Dmytryk A, Olszewski J, Rój E, Chojnacka K (2014) SC-CO2 Spirulina platensis extract as plant growth biostimulant. Supercrit Fluid Appl 109. http://ins.pulawy.pl/icsfta/res/icsfta-2017.pdf#page=110

  68. Lerer L, Kamaleson C (2020) Growth, yield, and quality in hydroponic vertical farming–effects of Phycocyanin-rich Spirulina extract. Preprints. https://www.researchgate.net/profile/Leonard-Lerer/publication/346088799_Growth_yield_and_quality_in_hydroponic_vertical_farming_-Effects_of_Phycocyaninrich_Spirulina_Extract/links/5fbb0c6a299bf104cf6cebc2/Growth-yield-and-quality-in-hydroponic-vertical-farming-Effects-of-Phycocyanin-rich-Spirulina-Extract.pdf

  69. Supraja KV, Behera B, Balasubramanian P (2020) Efficacy of microalgal extracts as biostimulants through seed treatment and foliar spray for tomato cultivation. Ind Crops Prod 151:112453. https://doi.org/10.1016/j.indcrop.2020.112453

    Article  CAS  Google Scholar 

  70. Amer HM, Marrez DA, Salama AB et al (2019) Growth and chemical constituents of cardoon plant in response to foliar application of various algal extracts. Biocatal Agric Biotechnol 21:101336. https://doi.org/10.1016/j.bcab.2019.101336

    Article  Google Scholar 

  71. Kiran SK, Prakash SS, Chamegowda TC et al (2020) Effect of different biostimulants on growth parameters of maize in red soils of Karnataka. J Pharmacogn Phytochem 9:541–545

    CAS  Google Scholar 

  72. Akgül F (2019) Effect of Spirulinaplatensis (Gomont) geitler extract on seed germination of wheat and barley. Alinteri J Agric Sci 34:148–153. https://doi.org/10.28955/alinterizbd.639000

    Article  Google Scholar 

  73. Dias GA, Rocha RHC, Araújo JL et al (2016) Growth, yield, and postharvest quality in eggplant produced under different foliar fertilizer (Spirulina platensis) treatments. Semina Ciênc Agrár 6:3893–3901. https://doi.org/10.5433/1679-0359.2016v37n6p3893

    Article  CAS  Google Scholar 

  74. Khan W, Rayirath UP, Subramanian S et al (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399. https://doi.org/10.1007/s00344-009-9103-x

    Article  CAS  Google Scholar 

  75. De Carvalho MEA, de Camargo PR, Gallo LA, Junior MVCF (2014) Seaweed extract provides development and production of wheat. Agrarian 7:166–170

    Google Scholar 

  76. Michalak I, Chojnacka K, Dmytryk A et al (2016) Evaluation of supercritical extracts of algae as biostimulants of plant growth in field trials. Front Plant Sci 7:1591. https://doi.org/10.3389/fpls.2016.01591

    Article  PubMed  PubMed Central  Google Scholar 

  77. Marschner P (2012) Marschner, s mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  78. Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic 196:39–48. https://doi.org/10.1016/j.scienta.2015.09.012

    Article  CAS  Google Scholar 

  79. Dineshkumar R, Duraimurugan M, Sharmiladevi N et al (2022) Microalgal liquid biofertilizer and biostimulant effect on green gram (Vigna radiata L) an experimental cultivation. Biomass Convers Biorefinery 12:3007–3027. https://doi.org/10.1007/s13399-020-00857-0

    Article  CAS  Google Scholar 

  80. Navarro-López E, Ruíz-Nieto A, Ferreira A et al (2020) Biostimulant potential of Scenedesmus obliquus grown in brewery wastewater. Molecules 25:664. https://doi.org/10.3390/molecules25030664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Romero García JM, Acién Fernández FG, Fernández Sevilla JM (2012) Development of a process for the production of l-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresour Technol 112:164–170. https://doi.org/10.1016/j.biortech.2012.02.094

    Article  CAS  PubMed  Google Scholar 

  82. Alobwede E, Leake JR, Pandhal J (2019) Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma 334:113–123. https://doi.org/10.1016/j.geoderma.2018.07.049

    Article  CAS  Google Scholar 

  83. Agnol LD, Neves RM, Maraschin M et al (2021) Green synthesis of Spirulina-based carbon dots for stimulating agricultural plant growth. Sustain Mater Technol 30:e00347. https://doi.org/10.1016/j.susmat.2021.e00347

    Article  CAS  Google Scholar 

  84. Silva MP, Nieva Lobos ML, Piloni RV et al (2020) Pyrolytic biochars from sunflower seed shells, peanut shells and Spirulina algae: their potential as soil amendment and natural growth regulators. SN Appl Sci 2:1926. https://doi.org/10.1007/s42452-020-03730-x

    Article  CAS  Google Scholar 

  85. Zörb C, Geilfus C-M, Dietz K-J (2019) Salinity and crop yield. Plant Biol 21:31–38

    Article  PubMed  Google Scholar 

  86. Abd El-Baky HH, El-Baz FK, El Baroty GS (2010) Enhancing antioxidant availability in wheat grains from plants grown under seawater stress in response to microalgae extract treatments. J Sci Food Agric 90:299–303. https://doi.org/10.1002/jsfa.3815

    Article  CAS  PubMed  Google Scholar 

  87. Escalante FM, Cortés-Jiménez D, Tapia-Reyes G, Suárez R (2015) Immobilized microalgae and bacteria improve salt tolerance of tomato seedlings grown hydroponically. J Appl Phycol 27:1923–1933

    Article  CAS  Google Scholar 

  88. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151. https://doi.org/10.3389/fpls.2014.00151

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vankova R (2014) Cytokinin regulation of plant growth and stress responses. Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer, pp 55–79

    Chapter  Google Scholar 

  90. Guzmán-Murillo MA, Ascencio F, Larrinaga-Mayoral JA (2013) Germination and ROS detoxification in bell pepper (Capsicum annuum L.) under NaCl stress and treatment with microalgae extracts. Protoplasma 250:33–42. https://doi.org/10.1007/s00709-011-0369-z

    Article  CAS  PubMed  Google Scholar 

  91. Mukherjee A, Patel JS (2020) Seaweed extract: biostimulator of plant defense and plant productivity. Int J Environ Sci Technol 17:553–558. https://doi.org/10.1007/s13762-019-02442-z

    Article  Google Scholar 

  92. Hadi MR, Karimi N (2012) The Role of Calcium in Plants’ Salt Tolerance. J Plant Nutr 35:2037–2054. https://doi.org/10.1080/01904167.2012.717158

    Article  CAS  Google Scholar 

  93. Rangsayatorn N, Upatham ES, Kruatrachue M et al (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119:45–53. https://doi.org/10.1016/S0269-7491(01)00324-4

    Article  CAS  Google Scholar 

  94. Murugesan AG, Maheswari S, Bagirath G (2008) Biosorption of cadmium by live and immobilized cells of Spirulina platensis. J Environ Res 2:307–312

  95. Renuka N, Prasanna R, Sood A et al (2016) Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollut Res 23:6608–6620. https://doi.org/10.1007/s11356-015-5884-6

    Article  CAS  Google Scholar 

  96. Nowwar AI, Farghal II, Ismail MA, Amin MA (2022) Biochemical changes on jute mallow plant irrigated with wastewater and its remediation. Egypt J Chem 65:5–6. https://doi.org/10.21608/ejchem.2022.109007.4972

    Article  Google Scholar 

  97. Lyon GD, Newton AC, Walters DR (2014) Induced resistance in crop protection: the future, drivers and barriers. In: Induced resistance for plant defense. John Wiley & Sons, Ltd, Hoboken, NJ, USA, pp 316–325

  98. Ben Salah I, Aghrouss S, Douira A et al (2018) Seaweed polysaccharides as bio-elicitors of natural defenses in olive trees against verticillium wilt of olive. J Plant Interact 13:248–255. https://doi.org/10.1080/17429145.2018.1471528

    Article  CAS  Google Scholar 

  99. Alkooranee JT, Kadhum NN (2019) Induce systemic resistance in cucumber by some bio-elicitors against alternaria leaf blight disease caused by Alternaria cucumerina fungus. Plant Arch 19:747–755

    Google Scholar 

  100. Agarwal PK, Dangariya M, Agarwal P (2021) Seaweed extracts: potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Res 58:102363. https://doi.org/10.1016/j.algal.2021.102363

    Article  Google Scholar 

  101. Du Jardin P (2015) Plant biostimulants: Definition, concept, main categories and regulation. Sci Hortic 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021

    Article  CAS  Google Scholar 

  102. Dey P, Ramanujam R, Venkatesan G, Nagarathnam R (2019) Sodium alginate potentiates antioxidant defense and PR proteins against early blight disease caused by Alternaria solani in Solanumlycopersicum Linn. PLoS ONE 14:e0223216. https://doi.org/10.1371/journal.pone.0223216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Attia MS, El-Sayyad GS, Saleh SS et al (2019) Spirulina platensis-polysaccharides promoted green silver nanoparticles production using gamma radiation to suppress the expansion of pear fire blight-producing Erwinia amylovora. J Clust Sci 30:919–935. https://doi.org/10.1007/s10876-019-01550-7

    Article  CAS  Google Scholar 

  104. Sofy MR, Sharaf AMA, Noufl M, Sofy AR (2014) Physiological and biochemical responses in Cucurbita pepo leaves associated with some elicitors-induced systemic resistance against Zucchhini yellow mosaic virus. Int J Mod Bot 4:61–74. https://doi.org/10.5923/j.ijmb.20140402.04

    Article  Google Scholar 

  105. Clarke SF, Guy PL, Burritt DJ, Jameson PE (2002) Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant 114:157–164

    Article  CAS  PubMed  Google Scholar 

  106. Hamouda R, Al-Saman M, El-Ansary M (2019) Effect of Saccharomyces cerevisiae and Spirulinaplatensis on suppressing root-knot nematode, Meloidogyne incognita infecting banana plants under greenhouse conditions. Egypt J Agronematology 18:90–102. https://doi.org/10.21608/ejaj.2019.52593

    Article  Google Scholar 

  107. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  108. Mazrou YSA, Makhlouf AH, Hassan MM, Baazeem A (2020) Microbial induction of resistance in tomato against root-knot nematode Meloidogynejavanica with biocontrol agents. J Environ Biol 41:1054–1060. https://doi.org/10.22438/jeb/41/5/MRN-1384

    Article  CAS  Google Scholar 

  109. Le Mire G (2018) Identification of elicitors inducing resistance in wheat against Zymoseptoria Tritici and characterization of the subsequent triggered defense-signaling pathways. 2018. Available online: https://orbi.uliege.be/handle/2268/222563

  110. Rachidi F, Benhima R, Kasmi Y et al (2021) Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches. Sci Rep 11:930. https://doi.org/10.1038/s41598-020-78820-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Market and market (2021) Top trends in the agricultural biologicals market global outlook, trends, and forecast to 2026. In: MarketsandMarkets. https://www.marketsandmarkets.com/Market-Reports/top-10-trendagricultural-biological-market-139215554.html.  Accessed 8 Apr 2022

  112. Behera B, Venkata Supraja K, Paramasivan B (2021) Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy. Bioresour Technol 339:125588. https://doi.org/10.1016/j.biortech.2021.125588

    Article  CAS  PubMed  Google Scholar 

  113. EL Boukhari ME, Barakate M, Bouhia Y, Lyamlouli K (2020) Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants 9:359. https://doi.org/10.3390/plants9030359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rumin J, Nicolau E, de Oliveira G, Junior R et al (2020) A bibliometric analysis of microalgae research in the world, Europe, and the European Atlantic area. Mar Drugs 18:79. https://doi.org/10.3390/md18020079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Arnau L (2016) Techno-economic feasibility study for the production of microalgae based plant biostimulant. KTH Royal Institute of Technology

  116. Barsanti L, Gualtieri P (2018) Is exploitation of microalgae economically and energetically sustainable? Algal Res 31:107–115. https://doi.org/10.1016/j.algal.2018.02.001

    Article  Google Scholar 

  117. fertilizers Microalgae Market (2021) Market Insights on fertilizers microalgae covering sales outlook, demand forecast & up-to-date key trends. https://www.futuremarketinsights.com/reports/microalgae-fertilizers-sector. Accessed 1 Oct 2022

  118. Behera B, Selvam SM, Paramasivan B (2022) Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives. Bioresour Technol 351:127038. https://doi.org/10.1016/j.biortech.2022.127038

    Article  CAS  PubMed  Google Scholar 

  119. Santini G, Biondi N, Rodolfi L, Tredici MR (2021) Plant biostimulants from cyanobacteria: an emerging strategy to improve yields and sustainability in agriculture. Plants 10:643. https://doi.org/10.3390/plants10040643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38. https://doi.org/10.1016/j.biombioe.2012.12.019

    Article  Google Scholar 

  121. Muhammad G, Alam MA, Mofijur M et al (2021) Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renew Sustain Energy Rev 135:110209. https://doi.org/10.1016/j.rser.2020.110209

    Article  Google Scholar 

  122. Neoalgae Agriculture (2022) In: Neoalgae. https://neoalgae.es/divisions/agro/?lang=en. Accessed 27 Jul 2022

  123. Kaliter archivos (2022) In: Agrostock Group. https://agrostockgroup.com/fr/marcas/kaliter/. Accessed 19 Sep 2022

  124. Admin SPIRALIS Long Life (2022) In: Cultifort. https://www.cultifort.com/fr/produit/spiralis-long-life/. Accessed 19 Sep 2022

  125. Meghan Downes C, Hu Q (2013) First principles of techno-economic analysis of algal mass culture. Handbook of microalgal culture. Wiley, London, pp 310–326

    Chapter  Google Scholar 

  126. Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliellasp. The Alga Dunaliella. CRC Press, London, pp 445–474

    Chapter  Google Scholar 

  127. Giwa A, Adeyemi I, Dindi A et al (2018) Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: a review and case study. Renew Sustain Energy Rev 88:239–257. https://doi.org/10.1016/j.rser.2018.02.032

    Article  CAS  Google Scholar 

  128. Costa JAV, Freitas BCB, Rosa GM et al (2019) Operational and economic aspects of Spirulina-based biorefinery. Bioresour Technol 292:121946. https://doi.org/10.1016/j.biortech.2019.121946

    Article  CAS  PubMed  Google Scholar 

  129. Duarte-Santos T, Mendoza-Martín JL, Fernández FA et al (2016) Optimization of carbon dioxide supply in raceway reactors: influence of carbon dioxide molar fraction and gas flow rate. Bioresour Technol 212:72–81. https://doi.org/10.1016/j.biortech.2016.04.023

    Article  CAS  PubMed  Google Scholar 

  130. Madkour FF, Kamil AE-W, Nasr HS (2012) Production and nutritive value of Spirulina platensis in reduced cost media. Egypt J Aquat Res 38:51–57. https://doi.org/10.1016/j.ejar.2012.09.003

    Article  Google Scholar 

  131. Brasil BSAF, Silva FCP, Siqueira FG (2017) Microalgae biorefineries: the Brazilian scenario in perspective. New Biotechnol 39:90–98. https://doi.org/10.1016/j.nbt.2016.04.007

    Article  CAS  Google Scholar 

  132. Zeng X, Guo X, Su G et al (2016) Harvesting of microalgal biomass. In: Bux F, Chisti Y (eds) Algae biotechnology: products and processes. Springer International Publishing, Cham, pp 77–89

    Chapter  Google Scholar 

  133. Dasan YK, Lam MK, Yusup S et al (2019) Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. Sci Total Environ 688:112–128. https://doi.org/10.1016/j.scitotenv.2019.06.181

    Article  CAS  PubMed  Google Scholar 

  134. Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 31:347–362. https://doi.org/10.1016/j.algal.2017.11.038

    Article  Google Scholar 

  135. Bataller BG, Capareda SC (2022) Preliminary techno-economic and sensitivity analysis of Spirulina powder production using a short-tank internally illuminated concentric-tube airlift photobioreactor. Chem Eng Trans 92:619–624. https://doi.org/10.3303/CET2292104

    Article  Google Scholar 

  136. Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061. https://doi.org/10.1007/s10811-015-0625-2

    Article  PubMed  Google Scholar 

  137. Chiaiese P, Corrado G, Colla G et al (2018) Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front Plant Sci 9:1782. https://doi.org/10.3389/fpls.2018.01782

    Article  PubMed  PubMed Central  Google Scholar 

  138. Silambarasan S, Logeswari P, Sivaramakrishnan R et al (2021) Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere 268:129323. https://doi.org/10.1016/j.chemosphere.2020.129323

    Article  CAS  PubMed  Google Scholar 

  139. Chentir I, Doumandji A, Ammar J et al (2018) Induced change in Arthrospira sp. (Spirulina) intracellular and extracellular metabolites using multifactor stress combination approach. J Appl Phycol 30:1563–1574. https://doi.org/10.1007/s10811-017-1348-3

    Article  CAS  Google Scholar 

  140. Ikaran Z, Suárez-Alvarez S, Urreta I, Castañón S (2015) The effect of nitrogen limitation on the physiology and metabolism of Chlorella vulgaris var L3. Algal Res 10:134–144. https://doi.org/10.1016/j.algal.2015.04.023

    Article  Google Scholar 

  141. Řezanka T, Lukavskỳ J, Nedbalová L, Sigler K (2011) Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. Phytochemistry 72:2342–2351. https://doi.org/10.1016/j.phytochem.2011.08.017

    Article  CAS  PubMed  Google Scholar 

  142. Chentir I, Hamdi M, Doumandji A et al (2017) Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. Int J Biol Macromol 105:1412–1420. https://doi.org/10.1016/j.ijbiomac.2017.07.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadia Arahou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

As no human or mammalian subjects were involved in this research, no ethical approval was required.

Consent for publication

All authors consent to publication.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arahou, F., Lijassi, I., Wahby, A. et al. Spirulina-Based Biostimulants for Sustainable Agriculture: Yield Improvement and Market Trends. Bioenerg. Res. 16, 1401–1416 (2023). https://doi.org/10.1007/s12155-022-10537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10537-8

Keywords

Navigation