Skip to main content
Log in

Induced change in Arthrospira sp. (Spirulina) intracellular and extracellular metabolites using multifactor stress combination approach

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The interactive effects of light intensity, NaCl, nitrogen, and phosphorus on intracellular biomass content and extracellular polymeric substance production were assessed for Arthrospira sp. (Spirulina) in a two-phase culture process using principal component analysis and central composite face design. Under high light intensity (120 μmol photons m−2 s−1) and low NaCl (1 gL−1), NaNO3, and K2HPO4 (0.5 g L−1), the carbohydrate content was maximized to 26.61%. Interaction of both K2HPO4 (1.6 gL−1) and NaCl (1.19 gL−1) with low NaNO3 (0.5 gL−1) achieved the maximum content of lipids (15.62%), while high NaCl (40 gL−1), K2HPO4, and NaNO3 (4.5 gL−1) enhanced mainly total carotenoids (0.85%). Conversely, under low light intensity of 10 μmol photons m−2 s−1 combined with 11.76 gL1 of NaCl, 0.5 gL−1 of NaNO3, and 2.68 gL−1 of K2HPO4, the phycobiliprotein content reached its highest level (16.09%). The maximum extracellular polymeric substance (EPS) production (0.902 gg−1 DW) was triggered under moderate light of 57.25 μmol photons m−2 s−1 and interaction of high NaCl (40 gL−1) and K2HPO4 (4.5 gL−1) with low NaNO3 (0.5 gL−1). The maximization ratios of intracellular biomass content in terms of carbohydrate, lipid, total carotenoid, phycobiliprotein, and EPS production were 3.55-, 1.73-, 9.55-, 2.92-, and 1.46-fold, respectively, greater than those obtained at optimal growth conditions. This study demonstrated that the multiple stress factors applied to the adopted two-phase culture process could be a promising strategy to produce biomass enriched in various high-value compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B (2013) Understanding precision nitrogen stress to optimize the growth and lipid content trade off in oleaginous green microalgae. Bioresour Technol 131:188–194

  • Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang JS, Kondo A (2012) Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol 108:211–215

  • AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  • Ben-amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J Phycol 18:529–537

    Article  CAS  Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Dunaliella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 27–58

  • Borowitzka MA, Borowitzka LJ, Kessly D (1990) Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J Appl Phycol 2(2):111–119

  • Bryant DA, Glazer AN, Eiserling FA (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110:61–75

  • Challouf R, Trabelsi L, Ben Dhieb R, El Abed O, Yahia A, Ghozzi K, Ben Ammar J, Omran H, Ben Ouada H (2011) Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54:831–838

    Article  CAS  Google Scholar 

  • Chen LZ, Li DH, Song LR, Hu CX, Wang GH, Liu YD (2006) Effects of salt stress on carbohydrate metabolism in desert soil alga Microcoleus vaginatus Gom. J Integr Plant Biol 48:914–919

    Article  CAS  Google Scholar 

  • Choudhury NK, Behera RK (2001) Photoinhibition of photosynthesis: role of carotenoids in photoprotection of chloroplast constituents. Photosynthetica 39:481–488

    Article  CAS  Google Scholar 

  • Chrismadha T, Borowitzka MA (1994) Effect of cell-density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J Appl Phycol 6:67–74

  • Cohen Z, Vonshak A, Richmond A (1987) Fatty acid composition of Spirulina strains grown under various environmental conditions. Photochemistry 26:2255–2258

  • Costa JAV, Colla LM, Duarte Filho PF, Kabke K, Weber A (2002) Modeling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol 18:603–607

    Article  Google Scholar 

  • De Philippis R, Sili C, Vincenzini M (1992) Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima. Microbiology 138:1623–1628

    Google Scholar 

  • Del Campo JA, Rodriguez H, Moreno J, Vargas MI, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854

    Article  PubMed  CAS  Google Scholar 

  • Delattre C, Pierre G, Laroche C, Michaud PH (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2016.08.001

  • Depraetere O, Pierre G, Deschoenmaeker F, Badri H, Foubert I, Leys N, Markou G, Wattiez R, Michaud P, Muylaert K (2015) Harvesting carbohydrate-rich Arthrospira platensis by spontaneous settling. Bioresour Technol 180:16–21

    Article  PubMed  CAS  Google Scholar 

  • Dillon JC, Phuc AP, Dubacq JP (1995) Nutritional value of the alga Spirulina. World Rev Nutr Diet 77:32–46

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Filali Mouhim R, Cornet JF, Fontaine T, Fournet B, Dubertret G (1993) Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotech Lett 15:567–572

  • Guedes AC, Meireles LA, Amaro HM, Malcata FX (2010) Changes in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity. J Am Oil Chem Soc 87:791–801

    Article  CAS  Google Scholar 

  • Hifney AF, Issa AA, Fawzy MA (2013) Abiotic stress induced production of β-carotene, allophycocyanin and total lipids in Spirulina sp. J Biol Earth Sci 3:54B–64B

    Google Scholar 

  • Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

  • Hu Q (2004) Environmental effects on cell composition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd, Oxford, pp 114–122

    Google Scholar 

  • Jolliffe I (2002) Principal component analysis. Springer, New York

    Google Scholar 

  • Khajepour F, Hosseini SA, GhorbaniNasrabadi R, Markou G (2015) Effect of light intensity and photoperiod on growth and biochemical composition of a local isolate of Nostoc calcicola. Appl Biochem Biotechnol 176:2279–2289

    Article  PubMed  CAS  Google Scholar 

  • Komárek J, Kling H, Komárková J (1998) Filamentous cyanobacteria. In: Wehr JD, Sheath RG (eds.) Freshwater algae of North America: ecology and classification, Elsevier, Amsterdam, pp. 117–196

  • Kromkamp J (1987) Formation and functional significance of storage products in cyanobacteria. N Z J Mar Freshw Res 21:457–465

    Article  CAS  Google Scholar 

  • Lama L, Nicolaus B, Calandrelli V, Manca MC, Romano I, Gambacorta A (1996) Effect of growth conditions on endo and exopolymer biosynthesis in Anabaena cylindrica 10C. Phytochemistry 42:655–659

    Article  CAS  Google Scholar 

  • Lamers PP, Van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2010) Carotenoids and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng 106:638–648

    Article  PubMed  CAS  Google Scholar 

  • Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2012) Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J Biotechnol 162:21–27

  • Lee MC, Chen YC, Peng TC (2012) Two-stage culture method for optimized polysaccharide production in Spirulina platensis. J Sci Food Agric 92:1562–1569

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Lee JE, Kim Y, Lee SY (2016) The production of high purity phycocyanin by Spirulina platensis using light-emitting diodes based two-stage cultivation. Appl Biochem Biotechnol 178:382–395

  • Lewin RA (1956) Extracellular polysaccharides of green algae. Can J Microbiol 2:665–672

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lu C, Vonshak A (2002) Effects of salinity on photosystem II function in cyanobacterial Spirulina platensis cells. Physiol Plant 114:405–413

    Article  PubMed  CAS  Google Scholar 

  • Majdoub H, Mansour MB, Chaubet F, Roudesli MS, Maaroufi RM (2009) Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochem Biophys Acta 1790:1377–1381

    Article  PubMed  CAS  Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542

    Article  PubMed  CAS  Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012a) Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process. BioEnrgy Res 5:915–925

    Article  CAS  Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012b) Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J Microbiol Biotech 28:2661–2670

  • Mur LR, Elema RP (1983) The influence of light quality on the growth of some phytoplankton species. Hydrobiol Bull 18:73–74

    Article  Google Scholar 

  • Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry 52:639–647

    Article  CAS  Google Scholar 

  • Olaizola M, Duerr EO (1990) Effects of light intensity and quality on the growth rate and photosynthetic pigment content of Spirulina platensis. J Appl Phycol 2:97–104

  • Olguín EJ, Galicia S, Angulo-Guerrero O, Hernández E (2001) The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresour Technol 77:19–24

    Article  PubMed  Google Scholar 

  • Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102:143–152

  • Peltier MR, Wilcox CJ, Sharp DC (1998) Technical note: application of the box-cox data transformation to animal science experiments. J Anim Sci 76:847–849

    Article  PubMed  CAS  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  PubMed  CAS  Google Scholar 

  • Post AF, De Wit R, Mur LR (1985) Interactions between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. J Plankton Res 7:487–495

    Article  Google Scholar 

  • Rechter S, König T, Auerochs S, Thulke S, Walter H, Dörnenburg H, Walter C, Marschall M (2006) Antiviral activity of Arthrospira-derived spirulan-like substances. Antivir Res 72:197–206

  • Rezanka T, Dor I, Prell A, Dembitsky VM (2003) Fatty acid composition of six freshwater wild cyanobacterial species. Folia Microbio (Praha) 48:71–75

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rizzo RF, Dos Santos BNC, De Castro GFPS, Passos TS, Nascimento MA, Guerra HD, Da Silva CG, Da Silva DD, Domingues JR, De Lima-Araújo KG (2015) Production of phycobiliproteins by Arthrospira platensis under different light conditions for application in food products. Food Sci Technol 35:247–252

    Article  Google Scholar 

  • Rossi F, De Philippis R (2016) Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 565–590

  • Sassano CEN, Gioielli LA, Ferreira LS, Rodrigues MS, Sato S, Converti A, Carvalho JCM (2010) Evaluation of the composition of continuously cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Biomass Bioenerg 34:1732–1738

    Article  CAS  Google Scholar 

  • Shalaby EA, Shanab SM, Singh V (2010) Salt stress enhancement of antioxidant and antiviral efficiency of Spirulina platensis. J Med Plant Res 4:2622–2632

    Article  CAS  Google Scholar 

  • Sharma G, Kumar M, Ali MI, Jasuja ND (2014) Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. J Microbiol Biochem Technol 6:202–206

    Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bact Rev 35:171–205

    PubMed  PubMed Central  CAS  Google Scholar 

  • Steiger S, Schafer L, Sandmann G (1999) High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803. J Photochem Photobiol 52:14–18

    Article  CAS  Google Scholar 

  • Tedesco MA, Duerr EO (1989) Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. J Appl Phycol 1:201–209

    Article  Google Scholar 

  • Trabelsi L, Ben Ouada H, Bacha H, Ghoul M (2009) Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. J Appl Phycol 21:405–412

    Article  CAS  Google Scholar 

  • Tseng CT, Zhao Y (1994) Extraction, purification and identification of polysaccharides of Spirulina (Arthrospira) platensis (Cyanophyceae). Algol Stud 75:303–312

    Google Scholar 

  • Vonshak A (2002) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology, In (Vonshak A, ed.). Taylor & Francis, London, pp. 43–65

  • Vonshak A, Abeliovich A, Boussiba S, Arad S, Richmond A (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185

  • Wyman M, Fay P (1986) Underwater light climate and the growth and pigmentation of planktonic blue-green algae (cyanobacteria) I. The influence of light quantity. Proc R Soc Lond B 227:367–380

    Article  Google Scholar 

  • Zarrouk C (1966) Contribution to the study of a Cyanophyceae. Influence of various physical and chemical factors on growth and photosynthesis of Spirulina maxima (Setch. and Gardner) Geitler. Ph.D Thesis. University of Paris, France

Download references

Acknowledgements

The authors would like to thank Dr. Hiri A. for his help in sampling procedure. We are also especially thankful to Dr. Marwa Hamdi and Issam Boukhibar for the constructive comments in improving this work and the proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imene Chentir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chentir, I., Doumandji, A., Ammar, J. et al. Induced change in Arthrospira sp. (Spirulina) intracellular and extracellular metabolites using multifactor stress combination approach. J Appl Phycol 30, 1563–1574 (2018). https://doi.org/10.1007/s10811-017-1348-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1348-3

Keywords

Navigation