Skip to main content

Advertisement

Log in

The Weakened Interaction Between HECTD4 and GluN2B in Ischemic Stroke Promotes Calcium Overload and Brain Injury Through a Mechanism Involving the Decrease of GluN2B and MALT1 Ubiquitination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glutamate receptor ionotropic NMDA 2B (GluN2B) plays an essential role in calcium overload during excitotoxicity. Reverse-phase nano-liquid chromatography-tandem mass spectrometry has revealed an interaction between GluN2B and HECT domain E3 ubiquitin protein ligase 4 (HECTD4), an E3 ubiquitin ligase highly expressed in the brain. As a potential substrate for HECTD4, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) acts as a scaffold with hydrolysis activity. This study explores the relationship between HECTD4, GluN2B, and MALT1, focusing on their role in brain injury in ischemic stroke. Rats were subjected to 2 h-ischemia followed by 24-h reperfusion to establish an ischemic stroke model. We observed the downregulation of HECTD4 and the upregulation of MALT1. Additionally, an increased GluN2B phosphorylation was concomitant with weakened interactions between HECTD4 and GluN2B, followed by decreased striatal-enriched protein phosphatase (STEP61). Knockdown of HECTD4 exacerbated hypoxia- or NMDA-induced injury in nerve cells coincident with a decrease in GluN2B and MALT1 ubiquitination, and an increase in GluN2B phosphorylation as well as an increase in intracellular calcium level, which were counteracted by MALT1 siRNA. Blockage of MALT1 with its inhibitor or siRNA reduced STEP61 degradation, accompanied by a decrease in GluN2B phosphorylation, intracellular calcium concentration, and brain cell injury, which were reversed by overexpression of MALT1. Based on these observations, we conclude that the downregulation of HECTD4 in ischemic stroke rat brain accounts for calcium overload and brain injury due to activating GluN2B directly and indirectly through a mechanism involving the reduced ubiquitination of GluN2B and MALT1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Marques BL, Carvalho GA, Freitas EMM, Chiareli RA, Barbosa TG, Di Araújo AGP et al (2019) The role of neurogenesis in neurorepair after ischemic stroke. Semin Cell Dev Biol 95:98–110. https://doi.org/10.1016/j.semcdb.2018.12.003

    Article  CAS  Google Scholar 

  2. Wu QJ, Tymianski M (2018) Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol Brain 11(1):15. https://doi.org/10.1186/s13041-018-0357-8

    Article  CAS  Google Scholar 

  3. Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, McHaourab HS et al (2016) Mechanism of NMDA receptor inhibition and activation. Cell 165(3):704–714. https://doi.org/10.1016/j.cell.2016.03.028

    Article  CAS  Google Scholar 

  4. Weilinger NL, Lohman AW, Rakai BD, Ma EM, Bialecki J, Maslieieva V et al (2016) Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci 19(3):432–442. https://doi.org/10.1038/nn.4236

    Article  CAS  Google Scholar 

  5. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188. https://doi.org/10.1016/j.pneurobio.2013.11.006

    Article  CAS  Google Scholar 

  6. Ge Y, Chen W, Axerio-Cilies P, Wang YT (2020) NMDARs in cell survival and death: implications in stroke pathogenesis and treatment. Trends Mol Med 26(6):533–551. https://doi.org/10.1016/j.molmed.2020.03.001

    Article  CAS  Google Scholar 

  7. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. https://doi.org/10.1038/nrn2911

    Article  CAS  Google Scholar 

  8. Lai TW, Shyu WC, Wang YT (2011) Stroke intervention pathways: NMDA receptors and beyond. Trends Mol Med 17(5):266–275. https://doi.org/10.1016/j.molmed.2010.12.008

    Article  CAS  Google Scholar 

  9. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM et al (2010) Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med 16(12):1439–1443. https://doi.org/10.1038/nm.2245

    Article  CAS  Google Scholar 

  10. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM et al (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234. https://doi.org/10.1016/j.cell.2009.12.055

    Article  CAS  Google Scholar 

  11. Ning K, Pei L, Liao M, Liu B, Zhang Y, Jiang W et al (2004) Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN. J Neurosci 24(16):4052–4060. https://doi.org/10.1523/jneurosci.5449-03.2004

    Article  CAS  Google Scholar 

  12. Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q et al (2022) EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer 21(1):16. https://doi.org/10.1186/s12943-021-01485-6

    Article  CAS  Google Scholar 

  13. Hamanaka K, Miyake N, Mizuguchi T, Miyatake S, Uchiyama Y, Tsuchida N et al (2022) Large-scale discovery of novel neurodevelopmental disorder-related genes through a unified analysis of single-nucleotide and copy number variants. Genome Med 14(1):40. https://doi.org/10.1186/s13073-022-01042-w

    Article  CAS  Google Scholar 

  14. Vatapalli R, Sagar V, Rodriguez Y, Zhao JC, Unno K, Pamarthy S et al (2020) Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Nat Commun 11(1):4153. https://doi.org/10.1038/s41467-020-18013-7

    Article  CAS  Google Scholar 

  15. Zhang ZY, Bai HH, Guo Z, Li HL, Diao XT, Zhang TY et al. (2020) Ubiquitination and functional modification of GluN2B subunit-containing NMDA receptors by Cbl-b in the spinal cord dorsal horn. Sci Signal 13(638). https://doi.org/10.1126/scisignal.aaw1519

  16. Jaworski M, Thome M (2016) The paracaspase MALT1: biological function and potential for therapeutic inhibition. Cell Mol Life Sci 73(3):459–473. https://doi.org/10.1007/s00018-015-2059-z

    Article  CAS  Google Scholar 

  17. Zhang YY, Peng J, Luo XJ (2022) Post-translational modification of MALT1 and its role in B cell- and T cell-related diseases. Biochem Pharmacol 198:114977. https://doi.org/10.1016/j.bcp.2022.114977

    Article  CAS  Google Scholar 

  18. Gehring T, Erdmann T, Rahm M, Graß C, Flatley A, O’Neill TJ et al (2019) MALT1 phosphorylation controls activation of T lymphocytes and survival of ABC-DLBCL Tumor Cells. Cell Rep 29(4):873-888.e810. https://doi.org/10.1016/j.celrep.2019.09.040

    Article  CAS  Google Scholar 

  19. Xia X, Cao G, Sun G, Zhu L, Tian Y, Song Y et al (2020) GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis. J Clin Invest 130(10):5180–5196. https://doi.org/10.1172/jci129269

    Article  CAS  Google Scholar 

  20. Alfano DN, Klei LR, Klei HB, Trotta M, Gough PJ, Foley KP et al (2020) MALT1 protease plays a dual role in the allergic response by acting in both mast cells and endothelial cells. J Immunol 204(9):2337–2348. https://doi.org/10.4049/jimmunol.1900281

    Article  CAS  Google Scholar 

  21. Chen X, Zhang X, Lan L, Xu G, Li Y, Huang S (2021) MALT1 positively correlates with Th1 cells, Th17 cells, and their secreted cytokines and also relates to disease risk, severity, and prognosis of acute ischemic stroke. J Clin Lab Anal 35(9):e23903. https://doi.org/10.1002/jcla.23903

    Article  CAS  Google Scholar 

  22. Li Y, Chen X, Wang Z, Zhao D, Chen H, Chen W et al (2013) The HECTD3 E3 ubiquitin ligase suppresses cisplatin-induced apoptosis via stabilizing MALT1. Neoplasia 15(1):39–48. https://doi.org/10.1593/neo.121362

    Article  CAS  Google Scholar 

  23. Tusche MW, Ward LA, Vu F, McCarthy D, Quintela-Fandino M, Ruland J et al (2009) Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J Exp Med 206(12):2671–2683. https://doi.org/10.1084/jem.20091802

    Article  CAS  Google Scholar 

  24. Demeyer A, Staal J, Beyaert R (2016) Targeting MALT1 proteolytic activity in immunity, inflammation and disease: good or bad? Trends Mol Med 22(2):135–150. https://doi.org/10.1016/j.molmed.2015.12.004

    Article  CAS  Google Scholar 

  25. Sanz-Clemente A, Nicoll RA, Roche KW (2013) Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 19(1):62–75. https://doi.org/10.1177/1073858411435129

    Article  CAS  Google Scholar 

  26. Qiu H, Qian T, Wu T, Gao T, Xing Q, Wang L (2021) Src family kinases inhibition ameliorates hypoxic-ischemic brain injury in immature rats. Front Cell Neurosci 15:746130. https://doi.org/10.3389/fncel.2021.746130

    Article  CAS  Google Scholar 

  27. Roche KW, Standley S, McCallum J, Dune Ly C, Ehlers MD, Wenthold RJ (2001) Molecular determinants of NMDA receptor internalization. Nat Neurosci 4(8):794–802. https://doi.org/10.1038/90498

    Article  CAS  Google Scholar 

  28. Lavezzari G, McCallum J, Dewey CM, Roche KW (2004) Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci 24(28):6383–6391. https://doi.org/10.1523/jneurosci.1890-04.2004

    Article  CAS  Google Scholar 

  29. Omkumar RV, Kiely MJ, Rosenstein AJ, Min KT, Kennedy MB (1996) Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 271(49):31670–31678. https://doi.org/10.1074/jbc.271.49.31670

    Article  CAS  Google Scholar 

  30. Kurup P, Zhang Y, Xu J, Venkitaramani DV, Haroutunian V, Greengard P et al (2010) Abeta-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61. J Neurosci 30(17):5948–5957. https://doi.org/10.1523/jneurosci.0157-10.2010

    Article  CAS  Google Scholar 

  31. Ren KD, Liu WN, Tian J, Zhang YY, Peng JJ, Zhang D et al (2019) Mitochondrial E3 ubiquitin ligase 1 promotes brain injury by disturbing mitochondrial dynamics in a rat model of ischemic stroke. Eur J Pharmacol 861:172617. https://doi.org/10.1016/j.ejphar.2019.172617

    Article  CAS  Google Scholar 

  32. Pál B (2018) Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 75(16):2917–2949. https://doi.org/10.1007/s00018-018-2837-5

    Article  CAS  Google Scholar 

  33. Pignataro G, Sirabella R, Anzilotti S, Di Renzo G, Annunziato L (2014) Does Na+/Ca2+ exchanger, NCX, represent a new druggable target in stroke intervention? Transl Stroke Res 5(1):145–155. https://doi.org/10.1007/s12975-013-0308-8

    Article  CAS  Google Scholar 

  34. Zhang YY, Tian J, Peng ZM, Liu B, Peng YW, Zhang XJ et al (2021) Caspofungin suppresses brain cell necroptosis in ischemic stroke rats via up-regulation of Pellino3. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-021-07231-w

    Article  Google Scholar 

  35. Zhang YY, Liu WN, Li YQ, Zhang XJ, Yang J, Luo XJ et al (2019) Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway. Naunyn Schmiedebergs Arch Pharmacol 392(9):1085–1095. https://doi.org/10.1007/s00210-019-01656-9

    Article  CAS  Google Scholar 

  36. Ren KD, Peng ZM, Tian J, Peng YW, Zhang YY, Zhang XJ et al (2021) Dipsacoside B exerts a beneficial effect on brain injury in the ischemic stroke rat through inhibition of mitochondrial E3 ubiquitin ligase 1. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527320666211118143554

  37. Zhou XL, Zhang CJ, Peng YN, Wang Y, Xu HJ, Liu CM (2019) ROR2 modulates neuropathic pain via phosphorylation of NMDA receptor subunit GluN2B in rats. Br J Anaesth 123(2):e239–e248. https://doi.org/10.1016/j.bja.2018.08.025

    Article  CAS  Google Scholar 

  38. Won S, Incontro S, Nicoll RA, Roche KW (2016) PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proc Natl Acad Sci U S A 113(32):E4736-4744. https://doi.org/10.1073/pnas.1609702113

    Article  CAS  Google Scholar 

  39. Kurup PK, Xu J, Videira RA, Ononenyi C, Baltazar G, Lombroso PJ et al (2015) STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson’s disease. Proc Natl Acad Sci U S A 112(4):1202–1207. https://doi.org/10.1073/pnas.1417423112

    Article  CAS  Google Scholar 

  40. O’Neill TJ, Seeholzer T, Gewies A, Gehring T, Giesert F, Hamp I et al (2021) TRAF6 prevents fatal inflammation by homeostatic suppression of MALT1 protease. Sci Immunol 6(65):eabh2095. https://doi.org/10.1126/sciimmunol.abh2095

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 82073849 to Xiu-Ju Luo, No. 82173815 and 81872873 to Jun Peng), Natural Science Foundation of Hunan Province, China (No. 2021JJ30032 to Xiu-Ju Luo, No. 2020JJ4770 to Jun Peng), Changsha Municipal Natural Science Foundation, China (No. kq 2014145 to Xiu-Ju Luo), and Fundamental Research Funds for the Central Universities of Central South University, China (No. 1053320200353 to Yi-Yue Zhang).

Author information

Authors and Affiliations

Authors

Contributions

Xiu-Ju Luo and Jun Peng conceived and designed the research. Yi-Yue Zhang, Xiao-Yan Yang, and Hui-Qi Liu conducted experiments. Yi-Yue Zhang, Zheng Zhang, and Chang-Ping Hu analyzed data. Yi-Yue Zhang, Jun Peng, and Xiu-Ju Luo wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Jun Peng or Xiu-Ju Luo.

Ethics declarations

Ethics Approval

All animals received humane care in compliance with the “Guide for the Care and Use of Laboratory Animals” published by the National Institutes of Health (NIH Publication, 8th edition, 2011) and the ARRIVE guidelines (Animal Research: Reporting In Vivo Experiments). Experiments were approved by the Institutional Animal Care and Use Committee of Central South University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 kb)

Supplementary file2 (XLSX 84 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YY., Yang, XY., Liu, HQ. et al. The Weakened Interaction Between HECTD4 and GluN2B in Ischemic Stroke Promotes Calcium Overload and Brain Injury Through a Mechanism Involving the Decrease of GluN2B and MALT1 Ubiquitination. Mol Neurobiol 60, 1563–1579 (2023). https://doi.org/10.1007/s12035-022-03169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03169-8

Keywords

Navigation