Skip to main content

Advertisement

Log in

Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Receptor-interacting protein kinase 1/3 (RIPK1/3) and mixed lineage kinase domain-like (MLKL)-mediated necroptosis contributes to brain injury after ischemic stroke. Ligustroflavone is an ingredient of common privet with activities of anti-inflammation and complement inhibition. This study aims to explore the effect of ligustroflavone on ischemic brain injury in stroke rat and the underlying mechanisms. A rat model of ischemic stroke was established by middle cerebral artery occlusion (MCAO), which showed ischemic injury (increase in neurological deficit score and infarct volume) and upregulation of necroptosis-associated proteins (RIPK1, RIPK3 and MLKL/p-MLKL). Administration of ligustroflavone (30 mg/kg, i.g.) 15 min before ischemia evidently improved neurological function, reduced infarct volume, and decreased the levels of necroptosis-associated proteins except the RIPK1. Consistently, hypoxia-cultured PC12 cells (O2/N2/CO2, 1:94:5, 8 h) caused cellular injury (LDH release and necroposis) concomitant with up-regulation of necroptosis-associated proteins, and these phenomena were blocked in the presence of ligustroflavone (25 μM) except the elevated RIPK1 levels. Using the Molecular Operating Environment (MOE) program, we identified RIPK1, RIPK3, and MLKL as potential targets of ligustroflavone. Further studies showed that the interaction between RIPK3 and RIPK1 or MLKL was significantly enhanced, which was blocked in the presence of ligustroflavone. Based on these observations, we conclude that ligustroflavone protects rat brain from ischemic injury, and its beneficial effect is related to the prevention of necroptosis through a mechanism involving targeting RIPK1, RIPK3, and/or MLKL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey LJ, Alahari S, Tagliaferro A, Post M, Caniggia I (2017) Augmented trophoblast cell death in preeclampsia can proceed via ceramide-mediated necroptosis. Cell Death Dis 8:e2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad M, Angeli JP, Vandenabeele P, Stockwell BR (2016) Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 15:348–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook WD, Moujalled DM, Ralph TJ, Lock P, Young SN, Murphy JM, Vaux DL (2014) RIPK1- and RIPK3-induced cell death mode is determined by target availability. Cell Death Differ 21:1600–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz SA, Qin Z, Stewart AFR, Chen HH (2018) Dabrafenib, an inhibitor of RIP3 kinase-dependent necroptosis, reduces ischemic brain injury. Neural Regen Res 13:252–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunai Z, Bauer PI, Mihalik R (2011) Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res 17:791–800

    Article  CAS  PubMed  Google Scholar 

  • Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T, Declercq W, Libert C, Cauwels A, Vandenabeele P (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35:908–918

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Oberst A, Dillon CP, Weinlich R, Salvesen GS (2011) RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. Mol Cell 44:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF (2017) Pathogenic mechanisms following ischemic stroke. Neurol Sci 38:1167–1186

    Article  PubMed  Google Scholar 

  • Koudstaal S, Oerlemans MI, Van der Spoel TI, Janssen AW, Hoefer IE, Doevendans PA, Sluijter JP, Chamuleau SA (2015) Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. Eur J Clin Investig 45:150–159

    Article  CAS  Google Scholar 

  • Li D, Meng L, Xu T, Su Y, Liu X, Zhang Z, Wang X (2017) RIPK1-RIPK3-MLKL-dependent necrosis promotes the aging of mouse male reproductive system. Elife 6

  • Ni Y, Gu WW, Liu ZH, Zhu YM, Rong JG, Kent TA, Li M, Qiao SG, An JZ, Zhang HL (2018) RIP1K contributes to neuronal and astrocytic cell death in ischemic stroke via activating Autophagic-lysosomal pathway. Neuroscience 371:60–74

    Article  CAS  PubMed  Google Scholar 

  • Nikseresht S, Khodagholi F, Ahmadiani A (2019) Protective effects of ex-527 on cerebral ischemia-reperfusion injury through necroptosis signaling pathway attenuation. J Cell Physiol 234:1816–1826

    Article  CAS  PubMed  Google Scholar 

  • Pieroni A, Pachaly P (2000) Isolation and structure elucidation of ligustroflavone, a new apigenin triglycoside from the leaves of Ligustrum vulgare L. Pharmazie 55:78–80

    CAS  PubMed  Google Scholar 

  • Pieroni A, Pachaly P, Huang Y, Van Poel B, Vlietinck AJ (2000) Studies on anti-complementary activity of extracts and isolated flavones from Ligustrum vulgare and Phillyrea latifolia leaves (Oleaceae). J Ethnopharmacol 70:213–217

    Article  CAS  PubMed  Google Scholar 

  • Schabitz WR, Schade H, Heiland S, Kollmar R, Bardutzky J, Henninger N, Muller H, Carl U, Toyokuni S, Sommer C, Schwab S (2004) Neuroprotection by hyperbaric oxygenation after experimental focal cerebral ischemia monitored by MRI. Stroke 35:1175–1179

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Guo S, Chen H, Peng JJ, Jia MM, Li NS, Zhang XJ, Yang J, Luo XJ, Peng J (2018) Combination of Emricasan with Ponatinib synergistically reduces ischemia/reperfusion injury in rat brain through simultaneous prevention of apoptosis and necroptosis. Transl Stroke Res 9:382–392

    Article  CAS  PubMed  Google Scholar 

  • Tonnus W, Linkermann A (2017) The in vivo evidence for regulated necrosis. Immunol Rev 277:128–149

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147

    Article  CAS  Google Scholar 

  • Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, Fernandez-Lopez A, Duarte CB, Carvalho AL, Santos AE (2014) Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiol Dis 68:26–36

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhao Y, Zhang L, Fan H, Qi C, Zhang K, Liu X, Fei L, Chen S, Wang M, Kuang F, Wang Y, Wu S (2018) RIPK3/MLKL-mediated neuronal necroptosis modulates the M1/M2 polarization of microglia/macrophages in the ischemic cortex. Cereb Cortex 28:2622–2635

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33

    Article  CAS  PubMed  Google Scholar 

  • Zhang HF, Li TB, Liu B, Lou Z, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Peng J, Luo XJ (2015) Inhibition of myosin light chain kinase reduces NADPH oxidase-mediated oxidative injury in rat brain following cerebral ischemia/reperfusion. Naunyn Schmiedeberg's Arch Pharmacol 388:953–963

    Article  CAS  Google Scholar 

  • Zhang YZ, Wang L, Zhang JJ, Xiong XM, Zhang D, Tang XM, Luo XJ, Ma QL, Peng J (2018) Vascular peroxide 1 promotes ox-LDL-induced programmed necrosis in endothelial cells through a mechanism involving beta-catenin signaling. Atherosclerosis 274:128–138

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (No. 81573430 to Xiu-Ju Luo, No. 81872873 to Jun Peng), and Hunan Provincial Natural Science Foundation of China (No. 2015JJ2156 to Xiu-Ju Luo).

Author information

Authors and Affiliations

Authors

Contributions

LXJ, PJ, and YJ conceived and designed the research. ZYY, LWN, and LYQ conducted experiments. ZYY and ZXJ analyzed data. ZYY, LXJ, and PJ wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Xiu-Ju Luo or Jun Peng.

Ethics declarations

The study was done with compliance to the ethics standards and approval from the ethics committee of the Central South University, China.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YY., Liu, WN., Li, YQ. et al. Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway. Naunyn-Schmiedeberg's Arch Pharmacol 392, 1085–1095 (2019). https://doi.org/10.1007/s00210-019-01656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01656-9

Keywords

Navigation