Skip to main content

Advertisement

Log in

Apoptosis in Alzheimer’s disease: insight into the signaling pathways and therapeutic avenues

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by the accumulation of hyperphosphorylated tau and amyloid-β (Aβ) protein resulting in synaptic loss and apoptosis. Aβ and tau deposition trigger apoptotic pathways that result in neuronal death. Apoptosis is considered to be responsible for manifestations associated with AD under pathological conditions. It regulates via extrinsic and intrinsic pathways. It activates various proteins including Bcl-2 family proteins like Bax, Bad, Bid, Bcl-XS, Bcl-XL and caspases comprising of initiator, effector and inflammatory caspases carried out through a cascade of events that finally lead to cell disintegration. The apoptotic elements interact with trophic factors, signaling molecules including Ras-ERK, JNK, GSK-3β, BDNF/TrkB/CREB and PI3K/AKT/mTOR. Ras-ERK signaling is involved in the progression of cell cycle and apoptosis. JNK pathway is also upregulated in AD which results in decreased expression of anti-apoptotic proteins. JAK-STAT triggers caspase-3 mediated apoptosis leading to neurodegeneration. The imbalance between autophagy and apoptosis is regulated by PI3K/Akt/mTOR pathway. GSK-3β is involved in the stimulation of pro-apoptotic factors resulting in dysregulation of apoptosis. Drugs like filgrastim, epigallocatechin gallate, curcumin, nicergoline and minocycline are under development which target these pathways and modulate the disease condition. This study sheds light on apoptotic pathways that are cardinal for neuronal survival and perform crucial role in the occurrence of AD along with the trends in therapeutics targeting apoptosis induced AD. To develop prospective treatments for AD, it is desirable to elucidate potential targets including restoration apoptotic balance, regulation of caspases, Bcl-2 and other crucial proteins involved in apoptosis mediated AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Dhapola R, Hota SS, Sarma P et al (2021) Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 29:1669–1681. https://doi.org/10.1007/s10787-021-00889-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thakur S, Dhapola R, Sarma P et al (2023) Neuroinflammation in Alzheimer’s Disease: current progress in Molecular Signaling and therapeutics. Inflammation 46:1–17. https://doi.org/10.1007/s10753-022-01721-1

    Article  CAS  PubMed  Google Scholar 

  3. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203. https://doi.org/10.1016/j.pharep.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  4. Ogunmokun G, Dewanjee S, Chakraborty P et al (2021) The potential role of cytokines and growth factors in the pathogenesis of Alzheimer’s Disease. Cells 10:2790. https://doi.org/10.3390/cells10102790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dhapola R, Sarma P, Medhi B et al (2022) Recent advances in Molecular Pathways and therapeutic implications targeting mitochondrial dysfunction for Alzheimer’s Disease. Mol Neurobiol 59:535–555. https://doi.org/10.1007/s12035-021-02612-6

    Article  CAS  PubMed  Google Scholar 

  6. Scheltens P, De Strooper B, Kivipelto M et al (2021) Alzheimer’s disease HHS Public Access. Lancet 397:1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pang Y, Lin W, Zhan L et al (2022) Inhibiting autophagy pathway of PI3K/AKT/mTOR promotes apoptosis in SK-N-SH Cell Model of Alzheimer’s Disease. J Healthc Eng 2022:1–10. https://doi.org/10.1155/2022/6069682

    Article  Google Scholar 

  8. LeBlanc A (2005) The role of apoptotic pathways in Alzheimers Disease Neurodegeneration and Cell Death. Curr Alzheimer Res 2:389–402. https://doi.org/10.2174/156720505774330573

    Article  CAS  PubMed  Google Scholar 

  9. Paquet C, Nicoll JAR, Love S et al (2018) Downregulated apoptosis and autophagy after anti-Aβ immunotherapy in Alzheimer’s disease. Brain Pathol 28:603–610. https://doi.org/10.1111/bpa.12567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morley JE, Farr SA, Nguyen AD (2018) Alzheimer Disease. Clin Geriatr Med 34:591–601. https://doi.org/10.1016/j.cger.2018.06.006

    Article  PubMed  Google Scholar 

  11. Takuma K, Yan SS, Du, Stern DM, Yamada K (2005) Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer’s disease. J Pharmacol Sci 97:312–316. https://doi.org/10.1254/jphs.CPJ04006X

    Article  CAS  PubMed  Google Scholar 

  12. Zhu X, Lee HG, Casadesus G et al (2005) Oxidative imbalance in Alzheimer’s disease. Mol Neurobiol 31:205–217. https://doi.org/10.1385/MN:31:1-3:205

    Article  CAS  PubMed  Google Scholar 

  13. Behl C (2000) Apoptosis and Alzheimer’s disease. J Neural Transm 107:1325–1344. https://doi.org/10.1007/s007020070021

    Article  CAS  PubMed  Google Scholar 

  14. Almeida A, Bolaños JP, Moreno S (2005) Cdh1/Hct1-APC is essential for the survival of postmitotic neurons. J Neurosci 25:8115–8121. https://doi.org/10.1523/JNEUROSCI.1143-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Obulesu M, Lakshmi • M, Jhansi (2014) Apoptosis in Alzheimer’s Disease: an understanding of the Physiology, Pathology and therapeutic avenues. Neurochem Res 39:2301–2312. https://doi.org/10.1007/s11064-014-1454-4

    Article  CAS  PubMed  Google Scholar 

  16. Sugiura R, Satoh R, Takasaki T (2021) Erk: a double-edged sword in cancer. Cells, Cells, Erk-dependent apoptosis as a potential therapeutic strategy for cancer. https://doi.org/10.3390/cells10102509

    Book  Google Scholar 

  17. Sharma VK, Singh TG, Singh S et al (2021) Apoptotic pathways and Alzheimer’s Disease: probing therapeutic potential. Neurochem Res 46:3103–3122. https://doi.org/10.1007/s11064-021-03418-7

    Article  CAS  PubMed  Google Scholar 

  18. Wei W, Norton DD, Wang X, Kusiak JW (2002) Aβ 17–42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain 125:2036–2043. https://doi.org/10.1093/BRAIN/AWF205

    Article  PubMed  Google Scholar 

  19. Song Z, He C, Yu W et al (2022) Baicalin attenuated Aβ1-42-Induced apoptosis in SH-SY5Y cells by inhibiting the Ras-ERK Signaling Pathway. Biomed Res Int 2022:1–11. https://doi.org/10.1155/2022/9491755

    Article  CAS  Google Scholar 

  20. Maiese K, Chong ZZ, Wang S, Shang YC (2012) Oxidant stress and signal transduction in the nervous system with the PI 3-K, akt, and mTOR cascade. Int J Mol Sci 13:13830–13866. https://doi.org/10.3390/ijms131113830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blomgren K, Leist M, Groc L (2007) Pathological apoptosis in the developing brain. Apoptosis 12:993–1010. https://doi.org/10.1007/s10495-007-0754-4

    Article  PubMed  Google Scholar 

  22. Erekat NS (2022) Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 35:65–78. https://doi.org/10.1002/ca.23792

    Article  PubMed  Google Scholar 

  23. Chang F, Steelman LS, Shelton JG et al (2003) Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway (review). Int J Oncol 22:469–480. https://doi.org/10.3892/ijo.22.3.469

    Article  CAS  PubMed  Google Scholar 

  24. Wu C-K, Thal L, Pizzo D et al (2005) Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer’s disease. Exp Neurol 195:484–496. https://doi.org/10.1016/j.expneurol.2005.06.020

    Article  CAS  PubMed  Google Scholar 

  25. Jan R, Chaudhry G-S (2019) Understanding apoptosis and apoptotic pathways targeted Cancer therapeutics. Adv Pharm Bull 2019:205–218. https://doi.org/10.15171/apb.2019.024

    Article  CAS  Google Scholar 

  26. Dickson DW (2004) Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J Clin Invest 114:23–27. https://doi.org/10.1172/JCI22317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kiraz Y, Adan A, Kartal Yandim M, Baran Y (2016) Major apoptotic mechanisms and genes involved in apoptosis. Tumor Biol 37:8471–8486. https://doi.org/10.1007/s13277-016-5035-9

    Article  CAS  Google Scholar 

  28. McIlwain DR, Berger T, Mak TW (2015) Caspase functions in cell death and disease: Fig. 1. Cold Spring Harb Perspect Biol 7:a026716. https://doi.org/10.1101/cshperspect.a026716

    Article  PubMed  PubMed Central  Google Scholar 

  29. Konishi Y, Lehtinen M, Donovan N, Bonni A (2002) Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol Cell 9:1005–1016. https://doi.org/10.1016/S1097-2765(02)00524-5

    Article  CAS  PubMed  Google Scholar 

  30. Xu K, Dai X-L, Huang H-C, Jiang Z-F (2011) Targeting HDACs: a promising therapy for Alzheimer’s Disease. Oxid Med Cell Longev 2011:1–5. https://doi.org/10.1155/2011/143269

    Article  CAS  Google Scholar 

  31. Peña-Blanco A, García-Sáez AJ (2018) Bax, bak and beyond — mitochondrial performance in apoptosis. FEBS J 285:416–431. https://doi.org/10.1111/febs.14186

    Article  CAS  PubMed  Google Scholar 

  32. Jagani H, Kasinathan N, Meka SR, Josyula VR (2016) Antiapoptotic Bcl-2 protein as a potential target for cancer therapy: a mini review. Artif Cells Nanomedicine Biotechnol 44:1212–1221. https://doi.org/10.3109/21691401.2015.1019668

    Article  CAS  Google Scholar 

  33. Hartman ML, Czyz M (2020) BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 11:260. https://doi.org/10.1038/s41419-020-2417-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang L, Qian Y, Li J et al (2021) BAD-mediated neuronal apoptosis and neuroinflammation contribute to Alzheimer’s disease pathology. iScience 24:102942. https://doi.org/10.1016/j.isci.2021.102942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas LW, Lam C, Edwards SW (2010) Mcl-1; the molecular regulation of protein function. FEBS Lett 584:2981–2989. https://doi.org/10.1016/j.febslet.2010.05.061

    Article  CAS  PubMed  Google Scholar 

  36. Lindenboim L, Kringel S, Braun T et al (2005) Bak but not BAx is essential for Bcl-xS-induced apoptosis. Cell Death Differ 12:713–723. https://doi.org/10.1038/sj.cdd.4401638

    Article  CAS  PubMed  Google Scholar 

  37. Zhu X, Raina A, Perry G, Smith M (2006) Apoptosis in Alzheimer Disease: a Mathematical improbability. Curr Alzheimer Res 3:393–396. https://doi.org/10.2174/156720506778249470

    Article  CAS  PubMed  Google Scholar 

  38. Yue J, López JM (2020) Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 21:2346. https://doi.org/10.3390/ijms21072346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kesavardhana S, Malireddi RKS, Kanneganti T-D (2020) Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol 38:567–595. https://doi.org/10.1146/annurev-immunol-073119-095439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li M, Wang D, He J et al (2020) Bcl-XL: a multifunctional anti-apoptotic protein. Pharmacol Res 151:104547. https://doi.org/10.1016/j.phrs.2019.104547

    Article  PubMed  Google Scholar 

  41. Callens M, Kraskovskaya N, Derevtsova K et al (2021) The role of Bcl-2 proteins in modulating neuronal Ca2 + signaling in health and in Alzheimer’s disease. Biochim Biophys Acta - Mol Cell Res 1868:118997. https://doi.org/10.1016/j.bbamcr.2021.118997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kudo W, Lee H-P, Smith MA et al (2012) Inhibition of bax protects neuronal cells from oligomeric Aβ neurotoxicity. Cell Death Dis 3:e309–e309. https://doi.org/10.1038/cddis.2012.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paradis E, Douillard H, Koutroumanis M et al (1996) Amyloid β peptide of Alzheimer’s disease downregulates bcl-2 and upregulates bax expression in human neurons. J Neurosci 16:7533–7539. https://doi.org/10.1523/jneurosci.16-23-07533.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsuchiya K (2020) Inflammasome-associated cell death: pyroptosis, apoptosis, and physiological implications. Microbiol Immunol 64:252–269. https://doi.org/10.1111/1348-0421.12771

    Article  CAS  PubMed  Google Scholar 

  45. Park G, Nhan HS, Tyan S-H et al (2020) Caspase activation and caspase-mediated cleavage of APP is Associated with amyloid β-Protein-Induced synapse loss in Alzheimer’s Disease. Cell Rep 31:107839. https://doi.org/10.1016/j.celrep.2020.107839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McArthur K, Kile BT (2018) Apoptotic caspases: multiple or mistaken identities? Trends Cell Biol 28:475–493. https://doi.org/10.1016/j.tcb.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  47. Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and – 10 in a caspase-9-dependent manner. J Cell Biol 144:281–292. https://doi.org/10.1083/jcb.144.2.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Long H-Z, Cheng Y, Zhou Z-W et al (2021) PI3K/AKT signal pathway: a target of Natural Products in the Prevention and Treatment of Alzheimer’s Disease and Parkinson’s Disease. Front Pharmacol. https://doi.org/10.3389/fphar.2021.648636

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bredesen DE (2009) Neurodegeneration in Alzheimer’s disease: caspases and synaptic element interdependence. Mol Neurodegener 4:1–10. https://doi.org/10.1186/1750-1326-4-27

    Article  CAS  Google Scholar 

  50. Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin 37:719–727. https://doi.org/10.1111/j.1745-7270.2005.00108.x

    Article  CAS  PubMed  Google Scholar 

  51. Akhtar A, Sah SP (2020) Insulin signaling pathway and related molecules: role in neurodegeneration and Alzheimer’s disease. Neurochem Int 135:104707. https://doi.org/10.1016/j.neuint.2020.104707

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Wang Y, Zhu Y et al (2019) Neuroprotective effect of S-trans, Trans-farnesylthiosalicylic acid via inhibition of RAS/ERK pathway for the treatment of Alzheimer’s Disease. Drug Des Devel Ther 13:4053–4063. https://doi.org/10.2147/DDDT.S233283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cai Z, Zhao B, Ratka A (2011) Oxidative stress and β-amyloid protein in Alzheimer’s disease. NeuroMolecular Med 13:223–250. https://doi.org/10.1007/s12017-011-8155-9

    Article  CAS  PubMed  Google Scholar 

  54. Yarza R, Vela S, Solas M, Ramirez MJ (2016) c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s Disease. Front Pharmacol. https://doi.org/10.3389/fphar.2015.00321

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ahmad SS, Sinha M, Ahmad K et al (2020) Study of Caspase 8 Inhibition for the Management of Alzheimer’s Disease: A Molecular Docking and Dynamics Simulation. Molecules 25:2071. https://doi.org/10.3390/molecules25092071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Che H, Zhang L, Ding L et al (2020) EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine enhance BDNF/TrkB/CREB signaling and inhibit neuronal apoptosis: in vitro and in vivo. Food Funct 11:1729–1739. https://doi.org/10.1039/c9fo02323b

    Article  CAS  PubMed  Google Scholar 

  57. Gao L, Zhang Y, Sterling K, Song W (2022) Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl Neurodegener 11:1–34. https://doi.org/10.1186/s40035-022-00279-0

    Article  CAS  Google Scholar 

  58. Rajesh Y, Kanneganti T-D (2022) Innate Immune Cell Death in Neuroinflammation and Alzheimer’s Disease. Cells 11:1885. https://doi.org/10.3390/cells11121885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hasan N, Zameer S, Najmi AK et al (2022) Roflumilast reduces pathological symptoms of sporadic Alzheimer’s disease in rats produced by Intracerebroventricular Streptozotocin by inhibiting NF-κB/BACE-1 mediated Aβ production in the Hippocampus and activating the cAMP/BDNF signalling pathway. Neurotox Res 40:432–448. https://doi.org/10.1007/s12640-022-00482-x

    Article  CAS  PubMed  Google Scholar 

  60. Rusek M, Smith J, El-khatib K et al (2023) The role of the JAK / STAT signaling pathway in the pathogenesis of Alzheimer ’ s Disease: new potential treatment target. Int J Mol Sci 24:864. https://doi.org/10.3390/ijms24010864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mäkelä J, Koivuniemi R, Korhonen L, Lindholm D (2010) Interferon-γ produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0011091

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jain M, Singh MK, Shyam H et al (2021) Role of JAK/STAT in the Neuroinflammation and its Association with Neurological Disorders. Ann Neurosci 28:191–200. https://doi.org/10.1177/09727531211070532

    Article  PubMed  Google Scholar 

  63. Gong P, Wang Y, Jing Y (2019) Apoptosis induction byHistone deacetylase inhibitors in Cancer cells: role of Ku70. Int J Mol Sci 20:1601. https://doi.org/10.3390/ijms20071601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun Y, Hua J, Chen G et al (2021) Alix: a candidate serum biomarker of Alzheimer’s Disease. Front Aging Neurosci 13:669612. https://doi.org/10.3389/fnagi.2021.669612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu Y, Ma J, Sun Y et al (2020) Effect and mechanism of PI3K/AKT/mTOR signaling pathway in the apoptosis of GC-1 cells induced by nickel nanoparticles. Chemosphere 255:126913. https://doi.org/10.1016/j.chemosphere.2020.126913

    Article  CAS  PubMed  Google Scholar 

  66. Zang G, Fang L, Chen L, Wang C (2018) Ameliorative effect of nicergoline on cognitive function through the PI3K/AKT signaling pathway in mouse models of Alzheimer’s disease. Mol Med Rep 17:7293–7300. https://doi.org/10.3892/mmr.2018.8786

    Article  CAS  PubMed  Google Scholar 

  67. Xu F, Na L, Li Y, Chen L (2020) RETRACTED ARTICLE: roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 10:54. https://doi.org/10.1186/s13578-020-00416-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lauretti E, Dincer O, Praticò D (2020) BBA - Molecular Cell Research glycogen synthase kinase-3 signaling in Alzheimer ’ s disease. BBA - Mol Cell Res 1867:118664. https://doi.org/10.1016/j.bbamcr.2020.118664

    Article  CAS  Google Scholar 

  69. Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S (2014) Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimer’s Res Ther 6:1–7. https://doi.org/10.1186/alzrt265

    Article  Google Scholar 

  70. De La Monte SM, Sohn YK, Wands JR (1997) Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J Neurol Sci 152:73–83. https://doi.org/10.1016/S0022-510X(97)00131-7

    Article  PubMed  Google Scholar 

  71. Toral-Rios D, Pichardo-Rojas PS, Alonso-Vanegas M, Campos-Peña V (2020) GSK3β and tau protein in Alzheimer’s Disease and Epilepsy. Front Cell Neurosci 14:1–9. https://doi.org/10.3389/fncel.2020.00019

    Article  CAS  Google Scholar 

  72. Zhu X, Wang S, Yu L et al (2014) TL-2 attenuates β-amyloid induced neuronal apoptosis through the AKT/GSK-3β/β-catenin pathway. Int J Neuropsychopharmacol 17:1511–1519. https://doi.org/10.1017/S1461145714000315

    Article  CAS  PubMed  Google Scholar 

  73. Ma T (2014) GSK3 in Alzheimer’s Disease: mind the Isoforms. J Alzheimer’s Dis 39:707–710. https://doi.org/10.3233/JAD-131661

    Article  CAS  Google Scholar 

  74. Yang Y-N, Su Y-T, Wu P-L et al (2018) Granulocyte colony-stimulating factor alleviates Bacterial-Induced neuronal apoptotic damage in the neonatal rat brain through epigenetic histone modification. Oxid Med Cell Longev 2018:1–10. https://doi.org/10.1155/2018/9797146

    Article  CAS  Google Scholar 

  75. Sepehri H, Nasiri H (2021) Filgrastim improved spatial memory functions in rat model of scopolamine induced alzheimer type memory dysfunction. Bull Pharm Sci Assiut 44:579–585. https://doi.org/10.21608/BFSA.2021.207187

    Article  Google Scholar 

  76. Lange KW, Lange KM, Nakamura Y (2022) Green tea, epigallocatechin gallate and the prevention of Alzheimer’s disease: clinical evidence. Food Sci Hum Wellness 11:765–770. https://doi.org/10.1016/j.fshw.2022.03.002

    Article  CAS  Google Scholar 

  77. Anderson W J (2019) Alzheimer’s Disease: potential benefits of curcumin. Heal Prim Care 3:1–2. https://doi.org/10.15761/hpc.1000170

    Article  Google Scholar 

  78. Im JJ, Jeong HS, Park J et al (2017) Changes in Regional Cerebral Perfusion after Nicergoline Treatment in Early Alzheimer’s Disease: a pilot study. Dement Neurocognitive Disord 16:104. https://doi.org/10.12779/dnd.2017.16.4.104

    Article  Google Scholar 

  79. Garrido-Mesa N, Zarzuelo A, Gálvez J (2013) Minocycline: Far beyond an antibiotic. Br J Pharmacol 169:337–352. https://doi.org/10.1111/bph.12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sa-nguanmoo P, Tanajak P, Kerdphoo S et al (2017) SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol 333:43–50. https://doi.org/10.1016/j.taap.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  81. Hazar-Yavuz AN, Yildiz S, Kaya RK et al (2022) Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. J Res Pharm 26:298–310. https://doi.org/10.29228/jrp.128

    Article  CAS  Google Scholar 

  82. Selvarani R, Mohammed S, Richardson A (2021) Effect of rapamycin on aging and age-related diseases—past and future. GeroScience 43:1135–1158. https://doi.org/10.1007/s11357-020-00274-1

    Article  CAS  PubMed  Google Scholar 

  83. El-Esawy R, Balaha M, Kandeel S et al (2018) Filgrastim (G-CSF) ameliorates parkinsonism L-dopa therapy’s drawbacks in mice. Basal Ganglia 13:17–26. https://doi.org/10.1016/j.baga.2018.06.001

    Article  Google Scholar 

  84. Cascella M, Bimonte S, Muzio MR et al (2017) The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer ’ s disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agents Cancer. https://doi.org/10.1186/s13027-017-0145-6

    Article  Google Scholar 

  85. Hooper C, Meimaridou E, Tavassoli M et al (2007) p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci Lett 418:34–37. https://doi.org/10.1016/j.neulet.2007.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen S, Der, Yin JH, Hwang CS et al (2012) Anti-apoptotic and anti-oxidative mechanisms of minocycline against sphingomyelinase/ceramide neurotoxicity: implication in Alzheimer’s disease and cerebral ischemia. Free Radic Res 46:940–950. https://doi.org/10.3109/10715762.2012.674640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RD is highly thankful to the Department of Science and Technology (DST-INSPIRE) for receiving fellowship. DHKR acknowledge UGC-BSR.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SK and RD wrote the manuscript; DHKR design, and edited Manuscript.

Corresponding author

Correspondence to Dibbanti HariKrishna Reddy.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Yes.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Dhapola, R. & Reddy, D.H. Apoptosis in Alzheimer’s disease: insight into the signaling pathways and therapeutic avenues. Apoptosis 28, 943–957 (2023). https://doi.org/10.1007/s10495-023-01848-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01848-y

Keywords

Navigation