Skip to main content

Advertisement

Log in

Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Szapiro G, Barbour B (2009) Parasynaptic signalling by fast neurotransmitters: the cerebellar cortex. Neuroscience 162(3):644–655. https://doi.org/10.1016/j.neuroscience.2009.03.077

    Article  PubMed  CAS  Google Scholar 

  2. Petralia RS, Wang YX, Hua F, Yi Z, Zhou A, Ge L, Stephenson FA, Wenthold RJ (2010) Organization of NMDA receptors at extrasynaptic locations. Neuroscience 167(1):68–87. https://doi.org/10.1016/j.neuroscience.2010.01.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. https://doi.org/10.1038/nrn2911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Papouin T, Oliet SH (2014) Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci. 369(1654):20130601. https://doi.org/10.1098/rstb.2013.0601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rodriguez M, Sabate M, Rodriguez-Sabate C, Morales I (2013) The role of non-synaptic extracellular glutamate. Brain Res Bull 93:17–26. https://doi.org/10.1016/j.brainresbull.2012.09.018

    Article  PubMed  CAS  Google Scholar 

  6. Kullmann DM, Erdemli G, Asztély F (1996) LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17(3):461–474

    Article  PubMed  CAS  Google Scholar 

  7. Asztely F, Erdemli G, Kullmann DM (1997) Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18(2):281–293

    Article  PubMed  CAS  Google Scholar 

  8. Rusakov DA, Kullmann DM (1998) Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc Natl Acad Sci USA. 95(15):8975–8980

    Article  PubMed  CAS  Google Scholar 

  9. Chalifoux JR, Carter AG (2011) Glutamate spillover promotes the generation of NMDA spikes. J Neurosci 31(45):16435–16446. https://doi.org/10.1523/jneurosci.2777-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kullmann DM, Asztely F (1998) Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci 21(1):8–14

    Article  PubMed  CAS  Google Scholar 

  11. Nie H, Weng HR (2009) Glutamate transporters prevent excessive activation of NMDA receptors and extrasynaptic glutamate spillover in the spinal dorsal horn. J Neurophysiol 101(4):2041–2051. https://doi.org/10.1152/jn.91138.2008

    Article  PubMed  CAS  Google Scholar 

  12. Oikonomou KD, Singh MB, Rich MT, Short SM, Antic SD (2015) Contribution of extrasynaptic N-methyl-d-aspartate and adenosine A1 receptors in the generation of dendritic glutamate-mediated plateau potentials. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2014.0193

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shen HW, Scofield MD, Boger H, Hensley M, Kalivas PW (2014) Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J Neurosci 34(16):5649–5657. https://doi.org/10.1523/jneurosci.4564-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marcoli M, Agnati LF, Benedetti F, Genedani S, Guidolin D, Ferraro L, Maura G, Fuxe K (2015) On the role of the extracellular space on the holistic behavior of the brain. Rev Neurosci 26(5):489–506. https://doi.org/10.1515/revneuro-2015-0007

    Article  PubMed  Google Scholar 

  15. Syková E, Vargová L (2008) Extrasynaptic transmission and the diffusion parameters of the extracellular space. Neurochem Int 52(1–2):5–13

    Article  PubMed  CAS  Google Scholar 

  16. Rimmele TS, Rocher AB, Wellbourne-Wood J, Chatton JY (2017) Control of glutamate transport by extracellular potassium: basis for a negative feedback on synaptic transmission. Cereb Cortex 27(6):3272–3283. https://doi.org/10.1093/cercor/bhx078

    Article  PubMed  Google Scholar 

  17. Wild AR, Bollands M, Morris PG, Jones S (2015) Mechanisms regulating spill-over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons. Eur J Neurosci 42(9):2633–2643. https://doi.org/10.1111/ejn.13075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Armbruster M, Hanson E, Dulla CG (2016) Glutamate clearance is locally modulated by presynaptic neuronal activity in the cerebral cortex. J Neurosci 36(40):10404–10415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Del Arco A, Segovia G, Fuxe K, Mora F (2003) Changes in dialysate concentrations of glutamate and GABA in the brain: an index of volume transmission mediated actions? J Neurochem 85(1):23–33

    Article  PubMed  CAS  Google Scholar 

  20. Matsui K, Jahr CE (2003) Ectopic release of synaptic vesicles. Neuron 40(6):1173–1183

    Article  PubMed  CAS  Google Scholar 

  21. Matsui K, Jahr CE (2004) Differential control of synaptic and ectopic vesicular release of glutamate. J Neurosci 24(41):8932–8939

    Article  PubMed  CAS  Google Scholar 

  22. Matsui K, Jahr CE, Rubio ME (2005) High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. J Neurosci 25(33):7538–7547

    Article  PubMed  CAS  Google Scholar 

  23. Balakrishnan S, Dobson KL, Jackson C, Bellamy TC (2014) Ectopic release of glutamate contributes to spillover at parallel fibre synapses in the cerebellum. J Physiol 592(7):1493–1503. https://doi.org/10.1113/jphysiol.2013.267039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403(6767):316–321

    Article  PubMed  CAS  Google Scholar 

  25. La Bella V, Valentino F, Piccoli T, Piccoli F (2007) Expression and developmental regulation of the cystine/glutamateexchanger (xc-) in the rat. Neurochem Res 32(6):1081–1090

    Article  PubMed  CAS  Google Scholar 

  26. Soria FN, Zabala A, Pampliega O, Palomino A, Miguelez C, Ugedo L, Sato H, Matute C, Domercq M (2016) Cystine/glutamate antiporter blockage induces myelin degeneration. Glia. 64(8):1381–1395. https://doi.org/10.1002/glia.23011

    Article  PubMed  Google Scholar 

  27. Wendt S, Wogram E, Korvers L, Kettenmann H (2016) Experimental cortical spreading depression induces NMDA receptor dependent potassium currents in microglia. J Neurosci 36(23):6165–6174. https://doi.org/10.1523/jneurosci.4498-15.2016

    Article  PubMed  CAS  Google Scholar 

  28. Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52(1–2):142–154

    Article  PubMed  CAS  Google Scholar 

  29. Panatier A, Robitaille R (2016) Astrocytic mGluR5 and the tripartite synapse. Neuroscience 323:29–34. https://doi.org/10.1016/j.neuroscience.2015.03.063

    Article  PubMed  CAS  Google Scholar 

  30. Fiacco TA, McCarthy KD (2018) Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J Neurosci 38(1):3–13. https://doi.org/10.1523/jneurosci.0016-17.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Savtchouk I, Volterra A (2018) Gliotransmission: beyond black-and-white. J Neurosci 38(1):14–25. https://doi.org/10.1523/jneurosci.0017-17.2017

    Article  PubMed  CAS  Google Scholar 

  32. Scofield MD (2017) Exploring the role of astroglial glutamate release and association with synapses in neuronal function and behavior. Biol Psychiatry. https://doi.org/10.1016/j.biopsych.2017.10.029

    Article  PubMed  Google Scholar 

  33. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7(6):613–620

    Article  PubMed  CAS  Google Scholar 

  34. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  PubMed  CAS  Google Scholar 

  35. Martineau M, Shi T, Puyal J, Knolhoff AM, Dulong J, Gasnier B, Klingauf J, Sweedler JV, Jahn R, Mothet JP (2013) Storage and uptake of d-serine into astrocytic synaptic-like vesicles specify gliotransmission. J Neurosci 33(8):3413–3423. https://doi.org/10.1523/jneurosci.3497-12.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bohmbach K, Schwarz MK, Schoch S, Henneberger C (2018) The structural and functional evidence for vesicular release from astrocytes in situ. Brain Res Bull 136:65–75. https://doi.org/10.1016/j.brainresbull.2017.01.015

    Article  PubMed  CAS  Google Scholar 

  37. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238. https://doi.org/10.1038/nrn2803

    Article  PubMed  CAS  Google Scholar 

  38. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23(9):3588–3596

    Article  PubMed  CAS  Google Scholar 

  39. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95(26):15735–15740

    Article  PubMed  CAS  Google Scholar 

  40. Warr O, Takahashi M, Attwell D (1999) Modulation of extracellular glutamate concentration in rat brain slices by cystine-glutamate exchange. J Physiol 514(Pt 3):783–793. https://doi.org/10.1111/j.1469-7793.1999.783ad.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Soria FN, Pérez-Samartín A, Martin A, Gona KB, Llop J, Szczupak B, Chara JC, Matute C, Domercq M (2014) Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage J Clin Invest. 124(8):3645–3655. https://doi.org/10.1172/jci71886

    Article  PubMed  CAS  Google Scholar 

  42. Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23(4):1320–1328

    Article  PubMed  CAS  Google Scholar 

  43. Rosenberg PA, Knowles R, Knowles KP, Li Y (1994) Beta-adrenergic receptor-mediated regulation of extracellular adenosine in cerebral cortex in culture. J Neurosci 14(5 Pt 2):2953–2965

    Article  PubMed  CAS  Google Scholar 

  44. Wang CM, Chang YY, Kuo JS, Sun SH (2002) Activation of P2X(7) receptors induced [(3)H]GABA release from the RBA-2 type-2 astrocyte cell line through a Cl(−)/HCO(3)(−)-dependent mechanism. Glia 37:8–18. https://doi.org/10.1002/glia.10004

    Article  PubMed  Google Scholar 

  45. Park H, Han KS, Oh SJ, Jo S, Woo J, Yoon BE, Lee CJ (2013) High glutamate permeability and distal localization of Best1 channel in CA1 hippocampal astrocyte. Mol Brain 6:54. https://doi.org/10.1186/1756-6606-6-54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Han KS, Woo J, Park H, Yoon BJ, Choi S, Lee CJ (2013) Channel-mediated astrocytic glutamate release via Bestrophin-1 targets synaptic NMDARs. Mol Brain 6:4. https://doi.org/10.1186/1756-6606-6-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Rose CR, Felix L, Zeug A, Dietrich D, Reiner A, Henneberger C (2018) Astroglial glutamate signaling and uptake in the hippocampus. Front Mol Neurosci 10:451. https://doi.org/10.3389/fnmol.2017.00451

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93(4):1621–1657. https://doi.org/10.1152/physrev.00007.2013

    Article  PubMed  CAS  Google Scholar 

  49. Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348(6300):443–446

    Article  PubMed  CAS  Google Scholar 

  50. Tremblay MÈ, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31(45):16064–16069

    Article  PubMed  CAS  Google Scholar 

  51. Hayashi Y, Koyanagi S, Kusunose N, Okada R, Wu Z, Tozaki-Saitoh H, Ukai K, Kohsaka S, Inoue K, Ohdo S, Nakanishi H (2013) The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S. Sci Rep 3:2744. https://doi.org/10.1038/srep02744

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jewett KA, Krueger JM (2012) Humoral sleep regulation; interleukin-1 and tumor necrosis factor. Vitam Horm 89:241–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fonken LK, Kitt MM, Gaudet AD, Barrientos RM, Watkins LR, Maier SF (2016) Diminished circadian rhythms in hippocampal microglia may contribute to age-related neuroinflammatory sensitization. Neurobiol Aging 47:102–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31(45):16241–16250. https://doi.org/10.1523/jneurosci.3667-11.2011

    Article  PubMed  CAS  Google Scholar 

  55. Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61(1):24–36. https://doi.org/10.1002/glia.22389

    Article  PubMed  Google Scholar 

  56. Gundersen V, Storm-Mathisen J, Bergersen LH (2015) Neuroglial transmission. Physiol Rev 95(3):695–726. https://doi.org/10.1152/physrev.00024.2014

    Article  PubMed  CAS  Google Scholar 

  57. McMullan SM, Phanavanh B, Li GG, Barger SW (2012) Metabotropic glutamate receptors inhibit microglial glutamate release. ASN Neuro. https://doi.org/10.1042/an20120044

    Article  PubMed  PubMed Central  Google Scholar 

  58. Thomas AG, O’Driscoll CM, Bressler J, Kaufmann W, Rojas CJ, Slusher BS (2014) Small molecule glutaminase inhibitors block glutamate release from stimulated microglia. Biochem Biophys Res Commun 443(1):32–36. https://doi.org/10.1016/j.bbrc.2013.11.043

    Article  PubMed  CAS  Google Scholar 

  59. Noda M, Nakanishi H, Nabekura J, Akaike N (2000) AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 20(1):251–258

    Article  PubMed  CAS  Google Scholar 

  60. Maezawa I, Jin LW (2010) Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci 30(15):5346–5356. https://doi.org/10.1523/jneurosci.5966-09.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Huang Y, Zhao L, Jia B, Wu L, Li Y, Curthoys N, Zheng JC (2011) Glutaminase dysregulation in HIV-1-infected human microglia mediates neurotoxicity: relevant to HIV-1-associated neurocognitive disorders. J Neurosci 31(42):15195–15204. https://doi.org/10.1523/jneurosci.2051-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Erdmann N, Tian C, Huang Y, Zhao J, Herek S, Curthoys N, Zheng J (2009) In vitro glutaminase regulation and mechanisms of glutamate generation in HIV-1-infected macrophage. J Neurochem 109(2):551–561. https://doi.org/10.1111/j.1471-4159.2009.05989.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Brown GC, Vilalta A (2015) How microglia kill neurons. Brain Res. 1628(Pt B):288–297. https://doi.org/10.1016/j.brainres.2015.08.031

    Article  PubMed  CAS  Google Scholar 

  64. Schlichter LC, Mertens T, Liu B (2011) Swelling activated Cl-channels in microglia: biophysics, pharmacology and role in glutamate release. Channels (Austin) 5(2):128–137

    Article  CAS  Google Scholar 

  65. Bagayogo IP, Dreyfus CF (2009) Regulated release of BDNF by cortical oligodendrocytes is mediated through metabotropic glutamate receptors and the PLC pathway. ASN Neuro. https://doi.org/10.1042/an20090006

    Article  PubMed  PubMed Central  Google Scholar 

  66. Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, Kirchhoff F, Möbius W, Goebbels S, Nave KA, Schneider A, Simons M, Klugmann M, Trotter J, Krämer-Albers EM (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 11(7):e1001604. https://doi.org/10.1371/journal.pbio.1001604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kessler JP (2013) Control of cleft glutamate concentration and glutamate spill-out by perisynaptic glia: uptake and diffusion barriers. PLoS One 8(8):e70791. https://doi.org/10.1371/journal.pone.0070791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH (2008) Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 90(2):135–147

    Article  PubMed  CAS  Google Scholar 

  69. Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60(5):1650–1657

    Article  PubMed  CAS  Google Scholar 

  70. Dash MB, Douglas CL, Vyazovskiy VV, Cirelli C, Tononi G (2009) Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci 29(3):620–629. https://doi.org/10.1523/jneurosci.5486-08.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Oldenziel WH, van der Zeyden M, Dijkstra G, Ghijsen WE, Karst H, Cremers TI, Westerink BH (2007) Monitoring extracellular glutamate in hippocampal slices with a microsensor. J Neurosci Methods 160(1):37–44

    Article  PubMed  CAS  Google Scholar 

  72. Kulagina NV, Shankar L, Michael AC (1999) Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors. Anal Chem 71(22):5093–5100

    Article  PubMed  CAS  Google Scholar 

  73. Rahman MA, Kwon NH, Won MS, Choe ES, Shim YB (2005) Functionalized conducting polymer as an enzyme-immobilizing substrate: an amperometric glutamate microbiosensor for in vivo measurements. Anal Chem 77(15):4854–4860

    Article  PubMed  CAS  Google Scholar 

  74. Qin S, Van der Zeyden M, Oldenziel WH, Cremers TI, Westerink BH (2008) Microsensors for in vivo measurement of glutamate in brain tissue. Sensors (Basel) 8(11):6860–6884

    Article  CAS  Google Scholar 

  75. Hascup KN, Hascup ER, Pomerleau F, Huettl P, Gerhardt GA (2008) Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice. J Pharmacol Exp Ther 324(2):725–731

    Article  PubMed  CAS  Google Scholar 

  76. Hascup ER, Hascup KN, Stephens M, Pomerleau F, Huettl P, Gratton A, Gerhardt GA (2010) Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex. J Neurochem. 115(6):1608–1620. https://doi.org/10.1111/j.1471-4159.2010.07066.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Rutherford EC, Pomerleau F, Huettl P, Strömberg I, Gerhardt GA (2007) Chronic second-by-second measures of l-glutamate in the central nervous system of freely moving rats. J Neurochem 102(3):712–722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Cellar NA, Burns ST, Meiners JC, Chen H, Kennedy RT (2005) Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids. Anal Chem 77(21):7067–7073

    Article  PubMed  CAS  Google Scholar 

  79. Boatell ML, Bendahan G, Mahy N (1995) Time-related cortical amino acid changes after basal forebrain lesion: a microdialysis study. J Neurochem 64(1):285–291

    Article  PubMed  CAS  Google Scholar 

  80. Lerma J, Herranz AS, Herreras O, Abraira V, Martín del Río R (1986) In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384(1):145–155

    Article  PubMed  CAS  Google Scholar 

  81. Rosenberg PA, Amin S, Leitner M (1992) Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J Neurosci 12(1):56–61

    Article  PubMed  CAS  Google Scholar 

  82. Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21(12):510–515

    Article  PubMed  CAS  Google Scholar 

  83. Syková E (2004) Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129(4):861–876

    Article  PubMed  CAS  Google Scholar 

  84. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377

    Article  PubMed  CAS  Google Scholar 

  85. Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12(7):897–904

    Article  PubMed  CAS  Google Scholar 

  86. Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P (2007) NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci 27(38):10165–10175

    Article  PubMed  CAS  Google Scholar 

  87. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. https://doi.org/10.1038/nrn3504

    Article  PubMed  CAS  Google Scholar 

  88. Petralia RS (2012) Distribution of extrasynaptic NMDA receptors on neurons. Sci World J 2012:267120. https://doi.org/10.1100/2012/267120

    Article  CAS  Google Scholar 

  89. Dore K, Stein IS, Brock JA, Castillo PE, Zito K, Sjöström PJ (2017) Unconventional NMDA receptor signaling. J Neurosci 37(45):10800–10807. https://doi.org/10.1523/jneurosci.1825-17.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Stroebel D, Casado M, Paoletti P (2018) Triheteromeric NMDA receptors: from structure to synaptic physiology. Curr Opin Physiol 02:1–12. https://doi.org/10.1016/j.cophys.2017.12.004

    Article  Google Scholar 

  91. Tovar KR, Westbrook GL (2002) Mobile NMDA receptors at hippocampal synapses. Neuron 34(2):255–264

    Article  PubMed  CAS  Google Scholar 

  92. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8(6):413–426

    Article  PubMed  CAS  Google Scholar 

  93. Harris AZ, Pettit DL (2007) Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. J Physiol 584(Pt 2):509–519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13(1):28–37

    Article  PubMed  CAS  Google Scholar 

  95. Dzamba D, Honsa P, Valny M, Kriska J, Valihrach L, Novosadova V, Kubista M, Anderova M (2015) Quantitative analysis of glutamate receptors in glial cells from the cortex of GFAP/EGFP mice following ischemic injury: focus on NMDA receptors. Cell Mol Neurobiol 35(8):1187–1202

    Article  PubMed  CAS  Google Scholar 

  96. Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26(10):2673–2683

    Article  PubMed  CAS  Google Scholar 

  97. Murugan M, Sivakumar V, Lu J, Ling EA, Kaur C (2011) Expression of N-methyl d-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-κB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats. Glia 59(4):521–539

    Article  PubMed  Google Scholar 

  98. Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, Le Charpentier T, Josserand J, Ali C, Vivien D, Collingridge GL, Lombet A, Issa L, Rene F, Loeffler JP, Kavelaars A, Verney C, Mantz J, Gressens P (2012) Activation of microglial N-methyl-d-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72(4):536–549

    Article  PubMed  CAS  Google Scholar 

  99. Singh P, Doshi S, Spaethling JM, Hockenberry AJ, Patel TP, Geddes-Klein DM, Lynch DR, Meaney DF (2012) N-methyl-d-aspartate receptor mechanosensitivity is governed by C terminus of NR2B subunit. J Biol Chem 287(6):4348–4359. https://doi.org/10.1074/jbc.m111.253740

    Article  PubMed  CAS  Google Scholar 

  100. Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W (2006) The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta 1762(11–12):1068–1082

    Article  CAS  Google Scholar 

  101. Matott MP, Kline DD, Hasser EM (2017) Glial EAAT2 regulation of extracellular nTS glutamate critically controls neuronal activity and cardiorespiratory reflexes. J Physiol 595(17):6045–6063. https://doi.org/10.1113/jp274620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Kopach O, Voitenko N (2013) Extrasynaptic AMPA receptors in the dorsal horn: evidence and functional significance. Brain Res Bull 93:47–56. https://doi.org/10.1016/j.brainresbull.2012.11.004

    Article  PubMed  CAS  Google Scholar 

  103. Nusser Z (2000) AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Curr Opin Neurobiol 10(3):337–341

    Article  PubMed  CAS  Google Scholar 

  104. Borgdorff AJ, Choquet D (2002) Regulation of AMPA receptor lateral movements. Nature 417(6889):649–653

    Article  PubMed  CAS  Google Scholar 

  105. Höft S, Griemsmann S, Seifert G, Steinhäuser C (2014) Heterogeneity in expression of functional ionotropic glutamate and GABA receptors in astrocytes across brain regions: insights from the thalamus. Philos Trans R Soc Lond B Biol Sci 369(1654):20130602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Seifert G, Steinhäuser C (1995) Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2 + permeability. Eur J Neurosci 7(9):1872–1881

    Article  PubMed  CAS  Google Scholar 

  107. Fan D, Grooms SY, Araneda RC, Johnson AB, Dobrenis K, Kessler JA, Zukin RS (1999) AMPA receptor protein expression and function in astrocytes cultured from hippocampus. J Neurosci Res 57(4):557–571

    Article  PubMed  CAS  Google Scholar 

  108. Zhou M, Kimelberg HK (2001) Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J Neurosci 21(20):7901–7908

    Article  PubMed  CAS  Google Scholar 

  109. Cervetto C, Frattaroli D, Venturini A, Passalacqua M, Nobile M, Alloisio S, Tacchetti C, Maura G, Agnati LF, Marcoli M (2015) Calcium-permeable AMPA receptors trigger vesicular glutamate release from Bergmann gliosomes. Neuropharmacology 99:396–407. https://doi.org/10.1016/j.neuropharm.2015.08.011

    Article  PubMed  CAS  Google Scholar 

  110. Saab AS, Neumeyer A, Jahn HM, Cupido A, Šimek AA, Boele HJ, Scheller A, Le Meur K, Götz M, Monyer H, Sprengel R, Rubio ME, Deitmer JW, De Zeeuw CI, Kirchhoff F (2012) Bergmann glial AMPA receptors are required for fine motor coordination. Science 337(6095):749–753. https://doi.org/10.1126/science.1221140

    Article  PubMed  CAS  Google Scholar 

  111. Beppu K, Kosai Y, Kido MA, Akimoto N, Mori Y, Kojima Y, Fujita K, Okuno Y, Yamakawa Y, Ifuku M, Shinagawa R, Nabekura J, Sprengel R, Noda M (2013) Expression, subunit composition, and function of AMPA-type glutamate receptors are changed in activated microglia; possible contribution of GluA2 (GluR-B)-deficiency under pathological conditions. Glia 61(6):881–891. https://doi.org/10.1002/glia.22481

    Article  PubMed  Google Scholar 

  112. Noda M, Nakanishi H, Nabekura J, Akaike N (2000) AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 20(1):251–258

    Article  PubMed  CAS  Google Scholar 

  113. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326(2):483–504

    Article  PubMed  CAS  Google Scholar 

  114. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60(7–8):1017–1041. https://doi.org/10.1016/j.neuropharm.2010.10.022

    Article  PubMed  CAS  Google Scholar 

  115. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  PubMed  CAS  Google Scholar 

  116. Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11(4):771–787

    Article  PubMed  CAS  Google Scholar 

  117. Nusser Z, Mulvihill E, Streit P, Somogyi P (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61(3):421–427

    Article  PubMed  CAS  Google Scholar 

  118. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23(3):583–592

    Article  PubMed  CAS  Google Scholar 

  119. Ferraguti F, Crepaldi L, Nicoletti F (2008) Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 60(4):536–581. https://doi.org/10.1124/pr.108.000166

    Article  PubMed  CAS  Google Scholar 

  120. Luján R, Roberts JD, Shigemoto R, Ohishi H, Somogyi P (1997) Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J Chem Neuroanat 13(4):219–241

    Article  PubMed  Google Scholar 

  121. Tamaru Y, Nomura S, Mizuno N, Shigemoto R (2001) Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 106(3):481–503

    Article  PubMed  CAS  Google Scholar 

  122. Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D (2003) Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 17(10):2106–2118

    Article  PubMed  Google Scholar 

  123. Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ (1996) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71(4):949–976

    Article  PubMed  CAS  Google Scholar 

  124. Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339(6116):197–200. https://doi.org/10.1126/science.1226740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Nizar K, Uhlirova H, Tian P, Saisan PA, Cheng Q, Reznichenko L, Weldy KL, Steed TC, Sridhar VB, MacDonald CL, Cui J, Gratiy SL, Sakadzić S, Boas DA, Beka TI, Einevoll GT, Chen J, Masliah E, Dale AM, Silva GA, Devor A (2013) In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J Neurosci 33(19):8411–8422. https://doi.org/10.1523/jneurosci.3285-12.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kim SK, Nabekura J, Koizumi S (2017) Astrocyte-mediated synapse remodeling in the pathological brain. Glia 65(11):1719–1727. https://doi.org/10.1002/glia.23169

    Article  PubMed  Google Scholar 

  127. Farso MC, O’Shea RD, Beart PM (2009) Evidence group I mGluR drugs modulate the activation profile of lipopolysaccharide-exposed microglia in culture. Neurochem Res 34(10):1721–1728. https://doi.org/10.1007/s11064-009-9999-3

    Article  PubMed  CAS  Google Scholar 

  128. Piers TM, Heales SJ, Pocock JM (2011) Positive allosteric modulation of metabotropic glutamate receptor 5 down-regulates fibrinogen-activated microglia providing neuronal protection. Neurosci Lett 505(2):140–145. https://doi.org/10.1016/j.neulet.2011.10.007

    Article  PubMed  CAS  Google Scholar 

  129. Kim YK, Na KS (2016) Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 70:117–126. https://doi.org/10.1016/j.pnpbp.2016.03.009

    Article  PubMed  CAS  Google Scholar 

  130. Kaushal V, Schlichter LC (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 28(9):2221–2230. https://doi.org/10.1523/jneurosci.5643-07.2008

    Article  PubMed  CAS  Google Scholar 

  131. Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41(6):1518–1524. https://doi.org/10.1042/bst20130237

    Article  PubMed  CAS  Google Scholar 

  132. Trabelsi Y, Amri M, Becq H, Molinari F, Aniksztejn L (2017) The conversion of glutamate by glutamine synthase in neocortical astrocytes from juvenile rat is important to limit glutamate spillover and peri/extrasynaptic activation of NMDA receptors. Glia 65(2):401–415. https://doi.org/10.1002/glia.23099

    Article  PubMed  Google Scholar 

  133. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  PubMed  CAS  Google Scholar 

  134. Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93(4):1621–1657. https://doi.org/10.1152/physrev.00007.2013

    Article  PubMed  CAS  Google Scholar 

  135. Milton M, Smith PD (2018) It’s all about timing: the involvement of Kir4.1 channel regulation in acute ischemic stroke pathology. Front Cell Neurosci 12:36. https://doi.org/10.3389/fncel.2018.00036

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15(3):721–728

    Article  PubMed  CAS  Google Scholar 

  137. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375(6532):599–603

    Article  PubMed  CAS  Google Scholar 

  138. Haugeto O, Ullensvang K, Levy LM, Chaudhry FA, Honoré T, Nielsen M, Lehre KP, Danbolt NC (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem. 271(44):27715–27722

    Article  PubMed  CAS  Google Scholar 

  139. Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18(21):8751–8757

    Article  PubMed  CAS  Google Scholar 

  140. Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, Gundersen V, Holmseth S, Lehre KP, Ullensvang K, Wojewodzic M, Zhou Y, Attwell D, Danbolt NC (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157(1):80–94. https://doi.org/10.1016/j.neuroscience.2008.08.043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32(17):6000–6013. https://doi.org/10.1523/jneurosci.5347-11.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18(10):3606–3619

    Article  PubMed  CAS  Google Scholar 

  143. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA. 94(8):4155–4160

    Article  PubMed  CAS  Google Scholar 

  144. Danbolt NC, Furness DN, Zhou Y (2016) Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem Int. 98:29–45. https://doi.org/10.1016/j.neuint.2016.05.009

    Article  PubMed  CAS  Google Scholar 

  145. Pál B (2015) Astrocytic actions on extrasynaptic neuronal currents. Front Cell Neurosci 9:474. https://doi.org/10.3389/fncel.2015.00474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Arnth-Jensen N, Jabaudon D, Scanziani M (2002) Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nat Neurosci 5(4):325–331

    Article  PubMed  CAS  Google Scholar 

  147. Lozovaya NA, Grebenyuk SE, Tsintsadze TSh, Feng B, Monaghan DT, Krishtal OA (2004) Extrasynaptic NR2B and NR2D subunits of NMDA receptors shape ‘superslow’ afterburst EPSC in rat hippocampus. J Physiol 558(Pt 2):451–463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Marcaggi P, Billups D, Attwell D (2003) The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fibre synapses. J Physiol 552(Pt 1):89–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Gómez-Gonzalo M, Martin-Fernandez M, Martínez-Murillo R, Mederos S, Hernández-Vivanco A, Jamison S, Fernandez AP, Serrano J, Calero P, Futch HS, Corpas R, Sanfeliu C, Perea G, Araque A (2017) Neuron-astrocyte signaling is preserved in the aging brain. Glia 65(4):569–580. https://doi.org/10.1002/glia.23112

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kovács A, Pál B (2017) Astrocyte-dependent slow inward currents (SICs) participate in neuromodulatory mechanisms in the pedunculopontine nucleus (PPN). Front Cell Neurosci 11:16. https://doi.org/10.3389/fncel.2017.00016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Pirttimaki TM, Sims RE, Saunders G, Antonio SA, Codadu NK, Parri HR (2017) Astrocyte-mediated neuronal synchronization properties revealed by false gliotransmitter release. J Neurosci 37(41):9859–9870. https://doi.org/10.1523/jneurosci.2761-16.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Wu DC, Chen RY, Cheng TC, Chiang YC, Shen ML, Hsu LL, Zhou N (2017) Spreadingdepression promotes astrocytic calcium oscillations and enhances gliotransmission to hippocampal neurons. Cereb Cortex 1:1–13. https://doi.org/10.1093/cercor/bhx192

    Article  Google Scholar 

  153. Kovács A, Bordás C, Bíró T, Hegyi Z, Antal M, Szücs P, Pál B (2017) Direct presynaptic and indirect astrocyte-mediated mechanisms both contribute to endocannabinoid signaling in the pedunculopontine nucleus of mice. Brain Struct Funct 222(1):247–266. https://doi.org/10.1007/s00429-016-1214-0

    Article  PubMed  CAS  Google Scholar 

  154. Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, Dziewczapolski G, Nakamura T, Cao G, Pratt AE, Kang YJ, Tu S, Molokanova E, McKercher SR, Hires SA, Sason H, Stouffer DG, Buczynski MW, Solomon JP, Michael S, Powers ET, Kelly JW, Roberts A, Tong G, Fang-Newmeyer T, Parker J, Holland EA, Zhang D, Nakanishi N, Chen HS, Wolosker H, Wang Y, Parsons LH, Ambasudhan R, Masliah E, Heinemann SF, Piña-Crespo JC, Lipton SA (2013) Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA 110(27):E2518–E2527. https://doi.org/10.1073/pnas.1306832110

    Article  PubMed  Google Scholar 

  155. Chanda S, Xu-Friedman MA (2011) Excitatory modulation in the cochlear nucleus through group I metabotropic glutamate receptor activation. J Neurosci 31(20):7450–7455. https://doi.org/10.1523/jneurosci.1193-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Yang Y, Xu-Friedman MA (2015) Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus. J Neurophysiol 113(10):3634–3645. https://doi.org/10.1152/jn.00693.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Pai YH, Lim CS, Park KA, Cho HS, Lee GS, Shin YS, Kim HW, Jeon BH, Yoon SH, Park JB (2016) Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells. Korean J Physiol Pharmacol 20(4):425–432. https://doi.org/10.4196/kjpp.2016.20.4.425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Stern JE, Son S, Biancardi VC, Zheng H, Sharma N, Patel KP (2016) Astrocytes contribute to angiotensin II stimulation of hypothalamic neuronal activity and sympathetic outflow. Hypertension 68(6):1483–1493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Zhang M, Biancardi VC, Stern JE (2017) An increased extrasynaptic NMDA tone inhibits A-type K + current and increases excitability of hypothalamic neurosecretory neurons in hypertensive rats. J Physiol 595(14):4647–4661. https://doi.org/10.1113/jp274327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  160. Sasaki T, Beppu K, Tanaka KF, Fukazawa Y, Shigemoto R, Matsui K (2012) Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proc Natl Acad Sci USA 109:20720–20725. https://doi.org/10.1073/pnas.1213458109

    Article  PubMed  Google Scholar 

  161. Libri V, Constanti A, Zibetti M, Postlethwaite M (1997) Metabotropic glutamate receptor subtypes mediating slow inward tail current (IADP) induction and inhibition of synaptic transmission in olfactory cortical neurones. Br J Pharmacol 120(6):1083–1095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Partridge JG, Lewin AE, Yasko JR, Vicini S (2014) Contrasting actions of group I metabotropic glutamate receptors in distinct mouse striatal neurones. J Physiol 592(13):2721–2733. https://doi.org/10.1113/jphysiol.2014.272773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Zhang Z, Séguéla P (2010) Metabotropic induction of persistent activity in layers II/III of anterior cingulate cortex. Cereb Cortex 20(12):2948–2957. https://doi.org/10.1093/cercor/bhq043

    Article  PubMed  Google Scholar 

  164. Jian K, Cifelli P, Pignatelli A, Frigato E, Belluzzi O (2010) Metabotropic glutamate receptors 1 and 5 differentially regulate bulbar dopaminergic cell function. Brain Res 1354:47–63. https://doi.org/10.1016/j.brainres.2010.07.104

    Article  PubMed  CAS  Google Scholar 

  165. Mannaioni G, Marino MJ, Valenti O, Traynelis SF, Conn PJ (2001) Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci 21(16):5925–5934

    Article  PubMed  CAS  Google Scholar 

  166. Ster J, Mateos JM, Grewe BF, Coiret G, Corti C, Corsi M, Helmchen F, Gerber U (2011) Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors. Proc Natl Acad Sci USA 108(24):9993–9997. https://doi.org/10.1073/pnas.1100548108

    Article  PubMed  Google Scholar 

  167. Kõszeghy Á, Kovács A, Bíró T, Szücs P, Vincze J, Hegyi Z, Antal M, Pál B (2015) Endocannabinoid signaling modulates neurons of the pedunculopontine nucleus (PPN) via astrocytes. Brain Struct Funct 220:3023–3041. https://doi.org/10.1007/s00429-014-0842-5

    Article  PubMed  CAS  Google Scholar 

  168. Kohlmeier KA, Christensen MH, Kristensen MP, Kristiansen U (2013) Pharmacological evidence of functional inhibitory metabotrophic glutamate receptors on mouse arousal-related cholinergic laterodorsal tegmental neurons. Neuropharmacology 66:99–113. https://doi.org/10.1016/j.neuropharm.2012.02.016

    Article  PubMed  CAS  Google Scholar 

  169. Irie T, Fukui I, Ohmori H (2006) Activation of GIRK channels by muscarinic receptors and group II metabotropic glutamate receptors suppresses Golgi cell activity in the cochlear nucleus of mice. J Neurophysiol 96(5):2633–2644

    Article  PubMed  CAS  Google Scholar 

  170. Hermes ML, Renaud LP (2011) Postsynaptic and presynaptic group II metabotropic glutamate receptor activation reduces neuronal excitability in rat midline paraventricular thalamic nucleus. J Pharmacol Exp Ther 336(3):840–849. https://doi.org/10.1124/jpet.110.176149

    Article  PubMed  CAS  Google Scholar 

  171. Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7(6):621–627

    Article  PubMed  CAS  Google Scholar 

  172. Polsky A, Mel B, Schiller J (2009) Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. J Neurosci 29(38):11891–11903. https://doi.org/10.1523/jneurosci.5250-08.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Oikonomou KD, Short SM, Rich MT, Antic SD (2012) Extrasynaptic glutamate receptor activation as cellular bases for dynamic range compression in pyramidal neurons. Front Physiol 3:334. https://doi.org/10.3389/fphys.2012.00334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Milojkovic BA, Radojicic MS, Goldman-Rakic PS, Antic SD (2004) Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree. J Physiol 558(Pt 1):193–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Milojkovic BA, Wuskell JP, Loew LM, Antic SD (2005) Initiation of sodium spikelets in basal dendrites of neocortical pyramidal neurons. J Membr Biol 208(2):155–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Monaghan DT, Jane DE (2009) Pharmacology of NMDA receptors in biology of the NMDA receptor. Van Dongen AM (ed), Frontiers in Neuroscience. CRC Press, Boca Raton

  177. Liu DD, Yang Q, Li ST (2013) Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull 93:10–16. https://doi.org/10.1016/j.brainresbull.2012.12.003

    Article  PubMed  CAS  Google Scholar 

  178. Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, Nakajima T (1998) dl-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 53(2):195–201

    Article  PubMed  CAS  Google Scholar 

  179. Bridges RJ, Esslinger CS (2005) The excitatory amino acid transporters: pharmacological insights on substrate and inhibitorspecificity of the EAAT subtypes. Pharmacol Ther 107(3):271–285

    Article  PubMed  CAS  Google Scholar 

  180. Bunch L, Erichsen MN, Jensen AA (2009) Excitatory amino acid transporters as potential drug targets. Expert Opin Ther Targets 13(6):719–731. https://doi.org/10.1517/14728220902926127

    Article  PubMed  CAS  Google Scholar 

  181. Kiryk A, Aida T, Tanaka K, Banerjee P, Wilczynski GM, Meyza K, Knapska E, Filipkowski RK, Kaczmarek L, Danysz W (2008) Behavioral characterization of GLT1 (±) mice as a model of mild glutamatergic hyperfunction. Neurotox Res 13(1):19–30

    Article  PubMed  CAS  Google Scholar 

  182. Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2005) Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 25(29):6907–6910

    Article  CAS  Google Scholar 

  183. Langer J, Gerkau NJ, Derouiche A, Kleinhans C, Moshrefi-Ravasdjani B, Fredrich M, Kafitz KW, Seifert G, Steinhäuser C, Rose CR (2017) Rapid sodium signaling couples glutamate uptake to breakdown of ATP in perivascular astrocyte endfeet. Glia 65(2):293–308. https://doi.org/10.1002/glia.23092

    Article  PubMed  Google Scholar 

  184. Figueiredo M, Lane S, Tang F, Liu BH, Hewinson J, Marina N, Kasymov V, Souslova EA, Chudakov DM, Gourine AV, Teschemacher AG, Kasparov S (2011) Optogenetic experimentation on astrocytes. Exp Physiol 96(1):40–50

    Article  PubMed  CAS  Google Scholar 

  185. Bang J, Kim HY, Lee H (2016) Optogenetic and chemogenetic approaches for studying astrocytes and gliotransmitters. Exp Neurobiol 25(5):205–221

    Article  PubMed  PubMed Central  Google Scholar 

  186. Cho WH, Barcelon E, Lee SJ (2016) Optogenetic glia manipulation: possibilities and future prospects. Exp Neurobiol 25(5):197–204

    Article  PubMed  PubMed Central  Google Scholar 

  187. Beppu K, Sasaki T, Tanaka KF, Yamanaka A, Fukazawa Y, Shigemoto R, Matsui K (2014) Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 81(2):314–320. https://doi.org/10.1016/j.neuron.2013.11.011

    Article  PubMed  CAS  Google Scholar 

  188. Figueiredo M, Lane S, Stout RF Jr, Liu B, Parpura V, Teschemacher AG, Kasparov S (2014) Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium 56(3):208–214. https://doi.org/10.1016/j.ceca.2014.07.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21(2):477–484

    Article  PubMed  CAS  Google Scholar 

  190. Qin S, Van der Zeyden M, Oldenziel WH, Cremers TI, Westerink BH (2008) Microsensors for in vivo measurement of glutamate in brain tissue. Sensors (Basel) 8(11):6860–6884

    Article  CAS  Google Scholar 

  191. Akagi Y, Hashigasako A, Degenaar P, Iwabuchi S, Hasan Q, Morita Y, Tamiya E (2003) Enzyme-linked sensitive fluorometric imaging of glutamate release from cerebral neurons of chick embryos. J Biochem 134(3):353–358

    Article  PubMed  CAS  Google Scholar 

  192. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan WB, Hires SA, Looger LL (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10(2):162–170. https://doi.org/10.1038/nmeth.2333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Wu J, Abdelfattah AS, Zhou H, Ruangkittisakul A, Qian Y, Ballanyi K, Campbell RE (2018) Geneticallyencoded glutamate indicators with altered color and topology. ACS Chem Biol. https://doi.org/10.1021/acschembio.7b01085

    Article  PubMed Central  PubMed  Google Scholar 

  194. Namiki S, Sakamoto H, Iinuma S, Iino M, Hirose K (2007) Optical glutamate sensor for spatiotemporal analysis of synaptic transmission. Eur J Neurosci 25(8):2249–2259

    Article  PubMed  Google Scholar 

  195. Okubo Y, Sekiya H, Namiki S, Sakamoto H, Iinuma S, Yamasaki M, Watanabe M, Hirose K, Iino M (2010) Imaging extrasynaptic glutamate dynamics in the brain. Proc Natl Acad Sci USA 107(14):6526–6531

    Article  PubMed  Google Scholar 

  196. Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci USA 102(24):8740–8745

    Article  PubMed  CAS  Google Scholar 

  197. Hires SA, Zhu Y, Tsien RY (2008) Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci USA 105(11):4411–4416

    Article  PubMed  CAS  Google Scholar 

  198. Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10(5):1583–1591

    Article  PubMed  CAS  Google Scholar 

  199. Kozlov AS, Angulo MC, Audinat E, Charpak S (2006) Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci USA 103:10058–10063. https://doi.org/10.1073/pnas.0603741103

    Article  PubMed  CAS  Google Scholar 

  200. Le Meur K, Galante M, Angulo MC, Audinat E (2007) Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. J Physiol 580(Pt 2):373–383. https://doi.org/10.1113/jphysiol.2006.123570

    Article  PubMed  CAS  Google Scholar 

  201. Jiménez-González C, Pirttimaki T, Cope DW, Parri HR (2011) Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets δ-subunit-containing GABAA receptors. Eur J Neurosci 33:1471–1482. https://doi.org/10.1111/j.1460-9568.2011.07645.x

    Article  PubMed  PubMed Central  Google Scholar 

  202. Pirttimaki T, Parri HR, Crunelli V (2013) Astrocytic GABA transporter GAT-1 dysfunction in experimental absence seizures. J Physiol 591:823–833. https://doi.org/10.1113/jphysiol.2012.242016

    Article  PubMed  CAS  Google Scholar 

  203. Moráles I, Fuentes A, Gonzalez-Hernandez T, Rodríguez M (2009) Osmosensitive response of glutamate in the substantia nigra. Exp Neurol 220(2):335–340. https://doi.org/10.1016/j.expneurol.2009.09.010

    Article  PubMed  CAS  Google Scholar 

  204. Santello M, Bezzi P, Volterra A (2011) TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69:988–1001. https://doi.org/10.1016/j.neuron.2011.02.003

    Article  PubMed  CAS  Google Scholar 

  205. Wang YF, Sun MY, Hou Q, Parpura V (2013) Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus. Glia 61(4):529–538. https://doi.org/10.1002/glia.22453

    Article  PubMed  Google Scholar 

  206. Wang YF, Parpura V (2016) Central role of maladapted astrocytic plasticity in ischemic brain edema formation. Front Cell Neurosci 10:129. https://doi.org/10.3389/fncel.2016.00129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743

    Article  PubMed  CAS  Google Scholar 

  208. Rebec GV, Wang Z (2001) Behavioral activation in rats requires endogenous ascorbate release in striatum. Journal of Neuroscience 21(2):668–675

    Article  PubMed  CAS  Google Scholar 

  209. Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89(4):1870–1877

    Article  PubMed  CAS  Google Scholar 

  210. Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431(7005):195–199

    Article  PubMed  CAS  Google Scholar 

  211. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6(1):43–50

    Article  PubMed  CAS  Google Scholar 

  212. Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT (2010) Astrocytic endfoot Ca2 + and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci USA. 107(8):3811–3816. https://doi.org/10.1073/pnas.0914722107

    Article  PubMed  Google Scholar 

  213. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333(6049):1647–1651. https://doi.org/10.1126/science.1206998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA, Swire M, Volbracht K, Gautier HO, Franklin RJ, Ffrench-Constant Charles, Attwell D, Káradóttir RT (2013) Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol 11(12):e1001743. https://doi.org/10.1371/journal.pbio.1001743

    Article  PubMed  PubMed Central  Google Scholar 

  215. Gallo V, Zhou JM, McBain CJ, Wright P, Knutson PL, Armstrong RC (1996) Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K + channel block. J Neurosci 16(8):2659–2670

    Article  PubMed  CAS  Google Scholar 

  216. Yuan X, Eisen AM, McBain CJ, Gallo V (1998) A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125(15):2901–2914

    PubMed  CAS  Google Scholar 

  217. Naskar K, Stern JE (2014) A functional coupling between extrasynaptic NMDA receptors and A-type K + channels under astrocyte control regulates hypothalamic neurosecretory neuronal activity. J Physiol 592(13):2813–2827. https://doi.org/10.1113/jphysiol.2014.270793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Jiao R, Cui D, Wang SC, Li D, Wang YF (2017) Interactions of the mechanosensitive channels with extracellular matrix, integrins, and cytoskeletal network in osmosensation. Front Mol Neurosci 10:96. https://doi.org/10.3389/fnmol.2017.00096 (eCollection 2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Wang YF, Liu LX, Yang HP (2011) Neurophysiological involvement in hypervolemic hyponatremia-evoked by hypersecretion of vasopressin. Transl Biomed 2(2):3

    CAS  Google Scholar 

  220. Wang YF, Hatton GI (2009) Astrocytic plasticity and patterned oxytocin neuronal activity: dynamic interactions. J Neurosci 29(6):1743–1754. https://doi.org/10.1523/jneurosci.4669-08.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Wang P, Qin D, Wang YF (2017) Oxytocin rapidly changes astrocytic GFAP plasticity by differentially modulating the expressions of pERK 1/2 and protein kinase A. Front Mol Neurosci 10:262. https://doi.org/10.3389/fnmol.2017.00262

    Article  PubMed  PubMed Central  Google Scholar 

  222. Shu Q, Zhang J, Ma W, Lei Y, Zhou D (2017) Orexin-A promotes Glu uptake by OX1R/PKCα/ERK1/2/GLT-1 pathway in astrocytes and protects co-cultured astrocytes and neurons against apoptosis in anoxia/hypoglycemic injury in vitro. Mol Cell Biochem 425(1–2):103–112. https://doi.org/10.1007/s11010-016-2866-z

    Article  PubMed  CAS  Google Scholar 

  223. Mark J, Godin Y, Mandel P (1969) Biosynthesis of aspartic, glutamic, gamma-aminobutyric acids and glutamine in brain of rats deprived of total sleep or paradoxical sleep. J Neurochem 16(8):1263–1272

    Article  PubMed  CAS  Google Scholar 

  224. Bettendorff L, Sallanon-Moulin M, Touret M, Wins P, Margineanu I, Schoffeniels E (1996) Paradoxical sleep deprivation increases the content of glutamate and glutamine in rat cerebral cortex. Sleep 19(1):65–71

    Article  PubMed  CAS  Google Scholar 

  225. Lopez-Rodriguez F, Medina-Ceja L, Wilson CL, Jhung D, Morales-Villagran A (2006) Changes in extracellular glutamate levels in rat orbitofrontal cortex during sleep and wakefulness. Arch Med Res 38(1):52–55

    Article  PubMed  CAS  Google Scholar 

  226. Azuma S, Kodama T, Honda K, Inoué S (1996) State-dependent changes of extracellular glutamate in the medial preoptic area in freely behaving rats. Neurosci Lett 214(2–3):179–182

    Article  PubMed  CAS  Google Scholar 

  227. Kékesi KA, Dobolyi A, Salfay O, Nyitrai G, Juhász G (1997) Slow wave sleep is accompanied by release of certain amino acids in the thalamus of cats. NeuroReport 8(5):1183–1186

    Article  PubMed  Google Scholar 

  228. Kodama T, Honda Y (1999) Acetylcholine and glutamate release during sleep-wakefulness in the pedunculopontine tegmental nucleus and norepinephrine changes regulated by nitric oxide. Psychiatry Clin Neurosci 53(2):109–111

    Article  PubMed  CAS  Google Scholar 

  229. Briggs C, Hirasawa M, Semba K (2018) Sleep deprivation distinctly alters glutamate transporter 1 apposition and excitatory transmission to orexin and MCH neurons. J Neurosci 38(10):2505–2518. https://doi.org/10.1523/jneurosci.2179-17.2018

    Article  Google Scholar 

  230. Poskanzer KE, Yuste R (2016) Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci USA 113(19):E2675–E2684. https://doi.org/10.1073/pnas.1520759113

    Article  PubMed  CAS  Google Scholar 

  231. Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ (2016) Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur J Neurosci 43(10):1298–1306. https://doi.org/10.1111/ejn.13074

    Article  PubMed  Google Scholar 

  232. Baskys A, Malenka RC (1991) Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J Physiol 444:687–701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Xi ZX, Baker DA, Shen H, Carson DS, Kalivas PW (2002) Group II metabotropic glutamate receptors modulate extracellular glutamate in the nucleus accumbens. J Pharmacol Exp Ther 300(1):162–171

    Article  PubMed  CAS  Google Scholar 

  234. Cochilla AJ, Alford S (1998) Metabotropic glutamate receptor-mediated control of neurotransmitter release. Neuron 20(5):1007–1016

    Article  PubMed  CAS  Google Scholar 

  235. Hu G, Duffy P, Swanson C, Ghasemzadeh MB, Kalivas PW (1999) The regulation of dopamine transmission by metabotropic glutamate receptors. J Pharmacol Exp Ther 289(1):412–416

    PubMed  CAS  Google Scholar 

  236. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215

    Article  PubMed  CAS  Google Scholar 

  237. Papouin T, Dunphy J, Tolman M, Foley JC, Haydon PG (2017) Astrocytic control of synaptic function. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2016.0154

    Article  PubMed  PubMed Central  Google Scholar 

  238. Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22(20):9134–9141

    Article  PubMed  CAS  Google Scholar 

  239. Perea G, Gómez R, Mederos S, Covelo A, Ballesteros JJ, Schlosser L, Hernández-Vivanco A, Martín-Fernández M, Quintana R, Rayan A, Díez A, Fuenzalida M, Agarwal A, Bergles DE, Bettler B, Manahan-Vaughan D, Martín ED, Kirchhoff F, Araque A (2016) Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks. Elife 5. https://doi.org/10.7554/elife.20362

    Article  Google Scholar 

  240. Covelo A, Araque A (2018) Neuronal activity determines distinct gliotransmitter release from a single astrocyte. Elife 7. https://doi.org/10.7554/elife.32237

    Article  Google Scholar 

  241. Wu YW, Grebenyuk S, McHugh TJ, Rusakov DA, Semyanov A (2012) Backpropagating action potentials enable detection of extrasynaptic glutamate by NMDA receptors. Cell Rep 1(5):495–505. https://doi.org/10.1016/j.celrep.2012.03.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Turrigiano G (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 4(1):a005736. https://doi.org/10.1101/cshperspect.a005736

    Article  PubMed  PubMed Central  Google Scholar 

  243. Fernandes D, Carvalho AL (2016) Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 139(6):973–996. https://doi.org/10.1111/jnc.13687

    Article  PubMed  CAS  Google Scholar 

  244. Sims RE, Butcher JB, Parri HR, Glazewski S (2015) Astrocyte and neuronal plasticity in the somatosensory system. Neural Plast 2015:732014. https://doi.org/10.1155/2015/732014

    Article  PubMed  PubMed Central  Google Scholar 

  245. Soares C, Lee KF, Nassrallah W, Béïque JC (2013) Differential subcellular targeting of glutamate receptor subtypes during homeostatic synaptic plasticity. J Neurosci 33(33):13547–13559. https://doi.org/10.1523/jneurosci.1873-13.2013

    Article  PubMed  CAS  Google Scholar 

  246. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304(5673):1021–1024

    Article  PubMed  CAS  Google Scholar 

  247. Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir ZI (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24(36):7821–7828

    Article  PubMed  CAS  Google Scholar 

  248. Toyoda H, Zhao MG, Zhuo M (2005) Roles of NMDA receptor NR2A and NR2B subtypes for long-term depression in the anterior cingulate cortex. Eur J Neurosci 22(2):485–494

    Article  PubMed  Google Scholar 

  249. Weitlauf C, Honse Y, Auberson YP, Mishina M, Lovinger DM, Winder DG (2005) Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptor-dependent long-term potentiation. J Neurosci 25(37):8386–8390

    Article  PubMed  CAS  Google Scholar 

  250. Berberich S, Punnakkal P, Jensen V, Pawlak V, Seeburg PH, Hvalby Ø, Köhr G (2005) Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 25(29):6907–6910

    Article  PubMed  CAS  Google Scholar 

  251. Morishita W, Lu W, Smith GB, Nicoll RA, Bear MF, Malenka RC (2007) Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology 52(1):71–76

    Article  PubMed  CAS  Google Scholar 

  252. Kollen M, Dutar P, Jouvenceau A (2008) The magnitude of hippocampal long term depression depends on the synaptic location of activated NR2-containing N-methyl-d-aspartate receptors. Neuroscience 154(4):1308–1317. https://doi.org/10.1016/j.neuroscience.2008.04.045

    Article  PubMed  CAS  Google Scholar 

  253. Yang Q, Zhu G, Liu D, Ju JG, Liao ZH, Xiao YX, Zhang Y, Chao N, Wang J, Li W, Luo JH, Li ST (2017) Extrasynaptic NMDA receptor dependent long-term potentiation of hippocampal CA1 pyramidal neurons. Sci Rep 7(1):3045. https://doi.org/10.1038/s41598-017-03287-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150(3):633–646. https://doi.org/10.1016/j.cell.2012.06.029

    Article  PubMed  CAS  Google Scholar 

  255. Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science. 339(6116):197–200. https://doi.org/10.1126/science.1226740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Latour A, Grintal B, Champeil-Potokar G, Hennebelle M, Lavialle M, Dutar P, Potier B, Billard JM, Vancassel S, Denis I (2013) Omega-3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA1. Aging Cell 12:76–84. https://doi.org/10.1111/acel.12026

    Article  PubMed  CAS  Google Scholar 

  257. Potier B, Billard JM, Rivière S, Sinet PM, Denis I, Champeil-Potokar G, Grintal B, Jouvenceau A, Kollen M, Dutar P (2010) Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 9(5):722–735. https://doi.org/10.1111/j.1474-9726.2010.00593.x

    Article  PubMed  CAS  Google Scholar 

  258. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. McGeer PL, Rogers J, McGeer EG (2016) Inflammation, antiinflammatory agents, and Alzheimer’s disease: the last 22 years. J Alzheimers Dis 54(3):853–857

    Article  PubMed  Google Scholar 

  260. Vanderheyden WM, Lim MM, Musiek ES, Gerstner JR (2018) Alzheimer’s disease and sleep-wake disturbances: amyloid, astrocytes, and animal models. J Neurosci 38(12):2901–2910. https://doi.org/10.1523/jneurosci.1135-17.2017

    Article  PubMed  Google Scholar 

  261. Furukawa K, Abe Y, Akaike N (1994) Amyloid beta protein-induced irreversible current in rat cortical neurones. NeuroReport 5(16):2016–2018

    Article  PubMed  CAS  Google Scholar 

  262. Yan SD, Fu J, Soto C, Chen X, Zhu H, Al-Mohanna F, Collison K, Zhu A, Stern E, Saido T, Tohyama M, Ogawa S, Roher A, Stern D (1997) An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 389(6652):689–695

    Article  PubMed  CAS  Google Scholar 

  263. Hansen DV, Hanson JE, Sheng M (2017) Microglia in Alzheimer’s disease. J Cell Biol. https://doi.org/10.1083/jcb.201709069

    Article  PubMed Central  PubMed  Google Scholar 

  264. Rajendran L, Paolicelli RC (2018) Microglia-mediated synapse loss in Alzheimer’s disease. J Neurosci 38(12):2911–2919. https://doi.org/10.1523/jneurosci.1136-17.2017

    Article  PubMed  Google Scholar 

  265. Liu HP, Lin WY, Liu SH, Wang WF, Tsai CH, Wu BT, Wang CK, Tsai FJ (2009) Genetic variation in N-methyl-d-aspartate receptor subunit NR3A but not NR3B influences susceptibility to Alzheimer’s disease. Dement Geriatr Cogn Disord 28(6):521–527

    Article  PubMed  CAS  Google Scholar 

  266. EndeleS RosenbergerG, Geider K, Popp B, Tamer C, Stefanova I, Milh M, Kortüm F, Fritsch A, Pientka FK, Hellenbroich Y, Kalscheuer VM, Kohlhase J, Moog U, Rappold G, Rauch A, Ropers HH, von Spiczak S, Tönnies H, Villeneuve N, Villard L, Zabel B, Zenker M, Laube B, Reis A, Wieczorek D, Van Maldergem L, Kutsche K (2010) Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 42(11):1021–1026. https://doi.org/10.1038/ng.677

    Article  CAS  Google Scholar 

  267. ZhangY LiP, Feng J, Wu M (2016) Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol Sci 37(7):1039–1047. https://doi.org/10.1007/s10072-016-2546-5

    Article  Google Scholar 

  268. SoniN ReddyBV, Kumar P (2014) GLT-1 transporter: an effective pharmacological target for various neurological disorders. Pharmacol Biochem Behav 127:70–81. https://doi.org/10.1016/j.pbb.2014.10.001

    Article  CAS  Google Scholar 

  269. Syková E, Vorísek I, Antonova T, Mazel T, Meyer-Luehmann M, Jucker M, Hájek M, Ort M, Bures J (2005) Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer’s disease. Proc Natl Acad Sci USA 102(2):479–484

    Article  PubMed  CAS  Google Scholar 

  270. Sidoryk-Wegrzynowicz M, Gerber YN, Ries M, Sastre M, Tolkovsky AM, Spillantini MG (2017) Astrocytes in mouse models of tauopathies acquire early deficits and lose neurosupportive functions. Acta Neuropathol Commun. 5(1):89. https://doi.org/10.1186/s40478-017-0478-9

    Article  PubMed  Google Scholar 

  271. Huang S, Tong H, Lei M, Zhou M, Guo W, Li G, Tang X, Li Z, Mo M, Zhang X, Chen X, Cen L, Wei L, Xiao Y, Li K, Huang Q, Yang X, Liu W, Zhang L, Qu S, Li S, Xu P (2018) Astrocytic glutamatergic transporters are involved in Aβ-induced synaptic dysfunction. Brain Res 1678:129–137. https://doi.org/10.1016/j.brainres.2017.10.011

    Article  PubMed  CAS  Google Scholar 

  272. Hoshi A, Tsunoda A, Yamamoto T, Tada M, Kakita A, Ugawa Y (2018) Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer’s disease. Neuropathol Appl Neurobiol. https://doi.org/10.1111/nan.12475

    Article  PubMed  Google Scholar 

  273. Feigin VL, Barker-Collo S, Krishnamurthi R, Theadom A, Starkey N (2010) Epidemiology of ischaemic stroke and traumatic brain injury. Best Pract Res Clin Anaesthesiol 24(4):485–494. https://doi.org/10.1016/j.bpa.2010.10.006

    Article  PubMed  Google Scholar 

  274. Heiss WD (2012) The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 1268:26–34. https://doi.org/10.1111/j.1749-6632.2012.06668.x

    Article  PubMed  Google Scholar 

  275. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    Article  PubMed  CAS  Google Scholar 

  276. Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81(3):1065–1096

    Article  PubMed  CAS  Google Scholar 

  277. Dorsett CR, McGuire JL, DePasquale EA, Gardner AE, Floyd CL, McCullumsmith RE (2017) Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma 34(2):263–272. https://doi.org/10.1089/neu.2015.4373

    Article  PubMed  PubMed Central  Google Scholar 

  278. Jia SW, Liu XY, Wang SC, Wang YF (2016) Vasopressin hypersecretion-associated brain edema formation in ischemic stroke: underlying mechanisms. J Stroke Cerebrovasc Dis 25(6):1289–1300

    Article  PubMed  Google Scholar 

  279. Leao AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:359–390

    Article  Google Scholar 

  280. Somjen GG (2005) Aristides Leão’s discovery of cortical spreading depression. J Neurophysiol 94(1):2–4

    Article  PubMed  CAS  Google Scholar 

  281. Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17(4):439–447

    Article  PubMed  CAS  Google Scholar 

  282. Kramer DR, Fujii T, Ohiorhenuan I, Liu CY (2016) Cortical spreading depolarization: Pathophysiology, implications, and future directions. J Clin Neurosci 24:22–27. https://doi.org/10.1016/j.jocn.2015.08.004

    Article  PubMed  Google Scholar 

  283. Hartings JA, Rolli ML, Lu XC, Tortella FC (2003) Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci 23(37):11602–11610

    Article  PubMed  CAS  Google Scholar 

  284. Dohmen C, Sakowitz OW, Fabricius M, Bosche B, Reithmeier T, Ernestus RI, Brinker G, Dreier JP, Woitzik J, Strong AJ, Graf R, Co-Operative Study of Brain Injury Depolarisations (COSBID) (2008) Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol. 63(6):720–728. https://doi.org/10.1002/ana.21390

    Article  PubMed  Google Scholar 

  285. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31(1):17–35. https://doi.org/10.1038/jcbfm.2010.191

    Article  PubMed  Google Scholar 

  286. Mies G, Iijima T, Hossmann KA (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. NeuroReport 4(6):709–711

    Article  PubMed  CAS  Google Scholar 

  287. Hartings JA, Rolli ML, Lu XC, Tortella FC (2003) Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci 23(37):11602–11610

    Article  PubMed  CAS  Google Scholar 

  288. Madl JE, Burgesser K (1993) Adenosine triphosphate depletion reverses sodium-dependent, neuronal uptake of glutamate in rat hippocampal slices. J Neurosci 13(10):4429–4444

    Article  PubMed  CAS  Google Scholar 

  289. Storm-Mathisen J, Danbolt NC, Rothe F, Torp R, Zhang N, Aas JE, Kanner BI, Langmoen I, Ottersen OP (1992) Ultrastructural immunocytochemical observations on the localization, metabolism and transport of glutamate in normal and ischemic brain tissue. Prog Brain Res 94:225–241

    Article  PubMed  CAS  Google Scholar 

  290. Song M, Yu SP (2014) Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl Stroke Res 5(1):17–27. https://doi.org/10.1007/s12975-013-0314-x

    Article  PubMed  CAS  Google Scholar 

  291. Pasantes-Morales H, Tuz K (2006) Volume changes in neurons: hyperexcitability and neuronal death. Contrib Nephrol 152:221–240

    Article  PubMed  CAS  Google Scholar 

  292. Kimelberg HK (2005) Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50(4):389–397

    Article  PubMed  Google Scholar 

  293. Hyzinski-García MC, Vincent MY, Haskew-Layton RE, Dohare P, Keller RW Jr, Mongin AA (2011) Hypo-osmotic swelling modifies glutamate-glutamine cycle in the cerebral cortex and in astrocytecultures. J Neurochem 118(1):140–152. https://doi.org/10.1111/j.1471-4159.2011.07289.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Haskew-Layton RE, Rudkouskaya A, Jin Y, Feustel PJ, Kimelberg HK, Mongin AA (2008) Two distinct modes of hypoosmotic medium-induced release of excitatory amino acids and taurine in the rat brain in vivo. PLoS One 3(10):e3543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Rovegno M, Sáez JC (2018) Role of astrocyte connexin hemichannels in cortical spreading depression. Biochim Biophys Acta 1860(1):216–223. https://doi.org/10.1016/j.bbamem.2017.08.014

    Article  PubMed  CAS  Google Scholar 

  296. Hu YY, Xu J, Zhang M, Wang D, Li L, Li WB (2015) Ceftriaxone modulates uptake activity of glial glutamate transporter-1 against global brain ischemia in rats. J Neurochem 132(2):194–205. https://doi.org/10.1111/jnc.12958

    Article  PubMed  CAS  Google Scholar 

  297. Becerra-Calixto A, Cardona-Gómez GP (2017) The role of astrocytes in neuroprotection after brain stroke: potential in cell therapy. Front Mol Neurosci 10:88. https://doi.org/10.3389/fnmol.2017.00088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Wu DC, Chen RY, Cheng TC, Chiang YC, Shen ML, Hsu LL, Zhou N (2017) Spreading depression promotes astrocytic calcium oscillations and enhances gliotransmission to hippocampal neurons. Cereb Cortex 1:1–13. https://doi.org/10.1093/cercor/bhx192

    Article  Google Scholar 

  299. Seidel JL, Escartin C, Ayata C, Bonvento G, Shuttleworth CW (2016) Multifaceted roles for astrocytes in spreading depolarization: a target for limiting spreadingdepolarization in acute brain injury? Glia 64(1):5–20. https://doi.org/10.1002/glia.22824

    Article  PubMed  Google Scholar 

  300. Liu Z, Chopp M (2016) Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 144:103–120. https://doi.org/10.1016/j.pneurobio.2015.09.008

    Article  PubMed  CAS  Google Scholar 

  301. Li Y, Liu Z, Xin H, Chopp M (2014) The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia 62(1):1–16. https://doi.org/10.1002/glia.22585

    Article  PubMed  Google Scholar 

  302. Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 18(18):7189–7199

    Article  PubMed  CAS  Google Scholar 

  303. Smith JM, Bradley DP, James MF, Huang CL (2006) Physiological studies of cortical spreading depression. Biol Rev Camb Philos Soc 81(4):457–481

    Article  PubMed  Google Scholar 

  304. Marklund N, Hillered L (2011) Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 164(4):1207–1229. https://doi.org/10.1111/j.1476-5381.2010.01163.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Walz W, Wuttke WA (1999) Independent mechanisms of potassium clearance by astrocytes in gliotic tissue. J Neurosci Res 56(6):595–603

    Article  PubMed  CAS  Google Scholar 

  306. D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus. J Neurophysiol 87(1):87–102

    Article  PubMed  Google Scholar 

  307. Torrente D, Cabezas R, Avila MF, García-Segura LM, Barreto GE, Guedes RC (2014) Cortical spreading depression in traumatic brain injuries: is there a role for astrocytes? Neurosci Lett 565:2–6. https://doi.org/10.1016/j.neulet.2013.12.058

    Article  PubMed  CAS  Google Scholar 

  308. Somjen GG, Segal MB, Herreras O (1991) Osmotic-hypertensive opening of the blood-brain barrier in rats does not necessarily provide access for potassium to cerebral interstitial fluid. Exp Physiol 76(4):507–514

    Article  PubMed  CAS  Google Scholar 

  309. Tang YT, Mendez JM, Theriot JJ, Sawant PM, López-Valdés HE, Ju YS, Brennan KC (2014) Minimum conditions for the induction of cortical spreading depression in brain slices. J Neurophysiol 112(10):2572–2579. https://doi.org/10.1152/jn.00205.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  310. Lapilover EG, Lippmann K, Salar S, Maslarova A, Dreier JP, Heinemann U, Friedman A (2012) Peri-infarct blood-brain barrier dysfunction facilitates induction of spreading depolarization associated with epileptiform discharges. Neurobiol Dis 48(3):495–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  311. Brassai A, Suvanjeiev RG, Bán EG, Lakatos M (2015) Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res Bull 112:1–6. https://doi.org/10.1016/j.brainresbull.2014.12.007

    Article  PubMed  CAS  Google Scholar 

  312. Mckee AC, Daneshvar DH (2015) The neuropathology of traumatic brain injury. Handb Clin Neurol 127:45–66. https://doi.org/10.1016/b978-0-444-52892-6.00004-0

    Article  PubMed  PubMed Central  Google Scholar 

  313. da Silva Meirelles L, Simon D, Regner A (2017) Neurotrauma: the crosstalk between neurotrophins and inflammation in the acutely injured brain. Int J Mol Sci. https://doi.org/10.3390/ijms18051082

    Article  PubMed  PubMed Central  Google Scholar 

  314. Winkler EA, Minter D, Yue JK, Manley GT (2016) Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg Clin N Am 27(4):473–488. https://doi.org/10.1016/j.nec.2016.05.008

    Article  PubMed  Google Scholar 

  315. Algattas H, Huang JH (2013) Traumatic Brain Injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci 15(1):309–341. https://doi.org/10.3390/ijms15010309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  316. McGinn MJ, Povlishock JT (2016) Pathophysiology of traumatic brain injury. Neurosurg Clin N Am 27(4):397–407. https://doi.org/10.1016/j.nec.2016.06.002

    Article  PubMed  Google Scholar 

  317. Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349(13):1257–1266

    Article  PubMed  Google Scholar 

  318. Wetherington J, Serrano G, Dingledine R (2008) Astrocytes in the epileptic brain. Neuron 58(2):168–178. https://doi.org/10.1016/j.neuron.2008.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  319. Wolfart J, Laker D (2015) Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 6:168. https://doi.org/10.3389/fphys.2015.00168

    Article  PubMed  PubMed Central  Google Scholar 

  320. Hinterkeuser S, Schröder W, Hager G, Seifert G, Blümcke I, Elger CE, Schramm J, Steinhäuser C (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 12(6):2087–2096

    Article  PubMed  CAS  Google Scholar 

  321. Bedner P, Dupper A, Hüttmann K, Müller J, Herde MK, Dublin P, Deshpande T, Schramm J, Häussler U, Haas CA, Henneberger C, Theis M, Steinhäuser C (2015) Astrocyte uncoupling as a cause of human temporal lobe epilepsy. 138(Pt 5):1208–1222. https://doi.org/10.1093/brain/awv067

    Article  Google Scholar 

  322. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57(2):226–235

    Article  PubMed  CAS  Google Scholar 

  323. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Neuronal and glial metabolite content of the epileptogenic human hippocampus. Ann Neurol 52(5):635–642

    Article  PubMed  CAS  Google Scholar 

  324. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60(8):1215–1226. https://doi.org/10.1002/glia.22341

    Article  PubMed  PubMed Central  Google Scholar 

  325. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  PubMed  CAS  Google Scholar 

  326. Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37

    Article  PubMed  CAS  Google Scholar 

  327. van der Hel WS, Notenboom RG, Bos IW, van Rijen PC, van Veelen CW, de Graan PN (2005) Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64:326–333

    Article  PubMed  CAS  Google Scholar 

  328. Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, Nelson N, Leite JP, Chimelli L, Born DE, Sakamoto AC, Assirati JA, Fried I, Peacock WJ, Ojemann GA, Adelson PD (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52:453–472

    Article  PubMed  CAS  Google Scholar 

  329. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen O, Gispen WH, de Graan PN (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125:32–43

    Article  PubMed  CAS  Google Scholar 

  330. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  PubMed  CAS  Google Scholar 

  331. Watanabe T, Morimoto K, Hirao T, Suwaki H, Watase K, Tanaka K (1999) Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice. Brain Res 845(1):92–96

    Article  PubMed  CAS  Google Scholar 

  332. Kékesi O, Ioja E, Szabó Z, Kardos J, Héja L (2015) Recurrent seizure-like events are associated with coupled astroglial synchronization. Front Cell Neurosci 9:215. https://doi.org/10.3389/fncel.2015.00215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  333. Boison D, Steinhäuser C (2017) Epilepsy and astrocyte energy metabolism. Glia. https://doi.org/10.1002/glia.23247

    Article  PubMed  Google Scholar 

  334. Chuang SC, Bianchi R, Wong RK (2000) Group I mGluR activation turns on a voltage-gated inward current in hippocampal pyramidal cells. J Neurophysiol 83(5):2844–2853

    Article  PubMed  CAS  Google Scholar 

  335. Chuang SC, Bianchi R, Kim D, Shin HS, Wong RK (2001) Group I metabotropic glutamate receptors elicit epileptiform discharges in the hippocampus through PLCbeta1 signaling. J Neurosci 21(16):6387–6394

    Article  PubMed  CAS  Google Scholar 

  336. Bianchi R, Chuang SC, Zhao W, Young SR, Wong RK (2009) Cellular plasticity for group I mGluR-mediated epileptogenesis. J Neurosci 29(11):3497–3507. https://doi.org/10.1523/jneurosci.5447-08.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Bianchi R, Wong RKS, Merlin LR (2012) Glutamate receptors in epilepsy: group I mGluR-mediated epileptogenesis. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s Basic Mechanisms of the Epilepsies [Internet]. 4th edition. Bethesda (MD): National Center for Biotechnology Information (US)

  338. Merlin LR (2002) Differential roles for mGluR1 and mGluR5 in the persistent prolongation of epileptiform bursts. J Neurophysiol 87(1):621–625

    Article  PubMed  CAS  Google Scholar 

  339. O’Connor JJ, Rowan MJ, Anwyl R (1994) Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation. Nature 367(6463):557–559

    Article  PubMed  Google Scholar 

  340. Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U (2001) Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet 10(4):329–338

    Article  PubMed  CAS  Google Scholar 

  341. Li Z, Zhang Y, Ku L, Wilkinson KD, Warren ST, Feng Y (2001) The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res 29(11):2276–2283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  342. Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27(7):370–377

    Article  PubMed  CAS  Google Scholar 

  343. Zhao W, Chuang SC, Young SR, Bianchi R, Wong RK (2015) Extracellular glutamate exposure facilitates group I mGluR-mediated epileptogenesis in the hippocampus. J Neurosci 35(1):308–315. https://doi.org/10.1523/jneurosci.1944-14.2015

    Article  PubMed  PubMed Central  Google Scholar 

  344. Dölen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of fragile X syndrome in mice. Neuron 56(6):955–962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  345. Rogawski MA (2013) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand Suppl 197:9–18. https://doi.org/10.1111/ane.12099

    Article  CAS  Google Scholar 

  346. Ghasemi M, Schachter SC (2011) The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 22(4):617–640. https://doi.org/10.1016/j.yebeh.2011.07.024

    Article  PubMed  Google Scholar 

  347. Czéh B, Nagy SA (2018) Clinical findings documenting cellular and molecular abnormalities of glia indepressivedisorders. Front Mol Neurosci 11:56. https://doi.org/10.3389/fnmol.2018.00056 (eCollection 2018)

    Article  PubMed  PubMed Central  Google Scholar 

  348. Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR, Gao K, Miskowiak KW, Grande I (2018) Bipolardisorders. Nat Rev Dis Primers 4:18008. https://doi.org/10.1038/nrdp.2018.8

    Article  PubMed  Google Scholar 

  349. Belujon P, Grace AA (2017) Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20(12):1036–1046. https://doi.org/10.1093/ijnp/pyx056

    Article  PubMed  PubMed Central  Google Scholar 

  350. Haroon E, Miller AH, Sanacora G (2017) Inflammation, glutamate, and glia: atrio of trouble in mood disorders. Neuropsychopharmacology 42(1):193–215. https://doi.org/10.1038/npp.2016.199

    Article  PubMed  CAS  Google Scholar 

  351. Venero C, Borrell J (1999) Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur J Neurosci 11(7):2465–2473

    Article  PubMed  CAS  Google Scholar 

  352. Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, Ellisman MH, Pekny M (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA 103(46):17513–17518

    Article  PubMed  CAS  Google Scholar 

  353. Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res 124(2):114–123

    Article  PubMed  CAS  Google Scholar 

  354. Stertz L, Magalhães PV, Kapczinski F (2013) Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Curr Opin Psychiatry 26(1):19–26. https://doi.org/10.1097/yco.0b013e32835aa4b4

    Article  PubMed  Google Scholar 

  355. Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski T, Quevedo J (2015) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300:141–154. https://doi.org/10.1016/j.neuroscience.2015.05.018

    Article  PubMed  CAS  Google Scholar 

  356. Miller AH (2013) Conceptual confluence: the kynurenine pathway as a common target for ketamine and the convergence of the inflammation and glutamate hypotheses of depression. Neuropsychopharmacology 38(9):1607–1608. https://doi.org/10.1038/npp.2013.140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. Santello M, Volterra A (2012) TNFα in synaptic function: switching gears. Trends Neurosci 35(10):638–647. https://doi.org/10.1016/j.tins.2012.06.001

    Article  PubMed  CAS  Google Scholar 

  358. Javitt DC (2010) Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci 47(1):4–16

    PubMed  Google Scholar 

  359. Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK (2016) Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry 73(7):665–674. https://doi.org/10.1001/jamapsychiatry.2016.0442

    Article  PubMed  Google Scholar 

  360. Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34(6):1578–1589. https://doi.org/10.1038/npp.2008.215

    Article  PubMed  CAS  Google Scholar 

  361. Shan D, Yates S, Roberts RC, McCullumsmith RE (2012) Update on the neurobiology of schizophrenia: a role for extracellular microdomains. Minerva Psichiatr 53(3):233–249

    PubMed  PubMed Central  CAS  Google Scholar 

  362. O’Donovan SM, Sullivan CR, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3(1):32. https://doi.org/10.1038/s41537-017-0037-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  363. Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B (2015) Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 161(1):4–18. https://doi.org/10.1016/j.schres.2014.03.035

    Article  PubMed  Google Scholar 

  364. Lander SS, Khan U, Lewandowski N, Chakraborty D, Provenzano FA, Mingote S, Chornyy S, Frigerio F, Maechler P, Kaphzan H, Small SA, Rayport S, Gaisler-Salomon I (2018) Glutamate dehydrogenase-deficient mice display schizophrenia-like behavioral abnormalities and CA1-specific hippocampal dysfunction. Schizophr Bull. https://doi.org/10.1093/schbul/sby011

    Article  PubMed  PubMed Central  Google Scholar 

  365. Na KS, Jung HY, Kim YK (2014) The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 48:277–286. https://doi.org/10.1016/j.pnpbp.2012.10.022

    Article  PubMed  CAS  Google Scholar 

  366. Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10(8):561–572. https://doi.org/10.1038/nrn2515

    Article  PubMed  CAS  Google Scholar 

  367. Kalivas PW, McFarland K, Bowers S, Szumlinski K, Xi ZX, Baker D (2003) Glutamate transmission and addiction to cocaine. Ann N Y Acad Sci 1003:169–175

    Article  PubMed  CAS  Google Scholar 

  368. Baker DA, McFarland K, Lake RW, Shen H, Toda S, Kalivas PW (2003) N-acetyl cysteine-induced blockade of cocaine-induced reinstatement. Ann N Y Acad Sci 1003:349–351

    Article  PubMed  Google Scholar 

  369. McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23(8):3531–3537

    Article  PubMed  CAS  Google Scholar 

  370. Scofield MD, Kalivas PW (2014) Astrocytic dysfunction and addiction: consequences of impaired glutamate homeostasis. Neuroscientist 20(6):610–622. https://doi.org/10.1177/1073858413520347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  371. Hearing M, Graziane N, Dong Y, Thomas MJ (2018) Opioid and psychostimulant plasticity: targeting overlap in nucleus accumbens glutamate signaling. Trends Pharmacol Sci 39(3):276–294. https://doi.org/10.1016/j.tips.2017.12.004

    Article  PubMed  CAS  Google Scholar 

  372. Philogene-Khalid HL, Simmons SJ, Muschamp JW, Rawls SM (2017) Effects of ceftriaxone on conditioned nicotine reward in rats. Behav Pharmacol 28(6):485–488. https://doi.org/10.1097/fbp.0000000000000314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  373. LaCrosse AL, O’Donovan SM, Sepulveda-Orengo MT, McCullumsmith RE, Reissner KJ, Schwendt M, Knackstedt LA (2017) Contrasting the role of xCT and GLT-1 upregulation in the ability of ceftriaxone to attenuate the cue-induced reinstatement of cocaine seeking and normalize AMPA receptor subunit expression. J Neurosci 37(24):5809–5821. https://doi.org/10.1523/jneurosci.3717-16.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  374. Logan CN, LaCrosse AL, Knackstedt LA (2018) Nucleus accumbens GLT-1a overexpression reduces glutamate efflux during reinstatement of cocaine-seeking but is not sufficient to attenuate reinstatement. Neuropharmacology 135:297–307. https://doi.org/10.1016/j.neuropharm.2018.03.022

    Article  PubMed  CAS  Google Scholar 

  375. Alshehri FS, Hakami AY, Althobaiti YS, Sari Y (2018) Effects of ceftriaxone on hydrocodone seeking behavior and glial glutamate transporters in P rats. Behav Brain Res 347:368–376. https://doi.org/10.1016/j.bbr.2018.03.043

    Article  PubMed  CAS  Google Scholar 

  376. Sari Y, Sreemantula SN (2012) Neuroimmunophilin GPI-1046 reduces ethanol consumption in part through activation of GLT1 in alcohol-preferring rats. Neuroscience 227:327–335. https://doi.org/10.1016/j.neuroscience.2012.10.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  377. Gipson CD, Reissner KJ, Kupchik YM, Smith AC, Stankeviciute N, Hensley-Simon ME, Kalivas PW (2013) Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. Proc Natl Acad Sci USA 110(22):9124–9129. https://doi.org/10.1073/pnas.1220591110

    Article  PubMed  Google Scholar 

  378. Fischer-Smith KD, Houston AC, Rebec GV (2012) Differential effects of cocaine access and withdrawal on glutamate type 1 transporter expression in rat nucleus accumbens core and shell. Neuroscience 210:333–339. https://doi.org/10.1016/j.neuroscience.2012.02.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  379. Wang J, Lanfranco MF, Gibb SL, Yowell QV, Carnicella S, Ron D (2010) Long-lasting adaptations of the NR2B-containing NMDA receptors in the dorsomedial striatum play a crucial role in alcohol consumption and relapse. J Neurosci 30(30):10187–10198. https://doi.org/10.1523/jneurosci.2268-10.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  380. Shen H, Moussawi K, Zhou W, Toda S, Kalivas PW (2011) Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc Natl Acad Sci USA 108(48):19407–19412. https://doi.org/10.1073/pnas.1112052108

    Article  PubMed  Google Scholar 

  381. Peters J, De Vries TJ (2012) Glutamate mechanisms underlying opiate memories. Cold Spring Harb Perspect Med. 2(9):a012088. https://doi.org/10.1101/cshperspect.a012088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  382. Pomierny-Chamioło L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M (2014) Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther. 142(3):281–305. https://doi.org/10.1016/j.pharmthera.2013.12.012

    Article  PubMed  CAS  Google Scholar 

  383. Moussawi K, Kalivas PW (2010) Group II metabotropic glutamate receptors (mGlu2/3) in drug addiction. Eur J Pharmacol. 639(1–3):115–122. https://doi.org/10.1016/j.ejphar.2010.01.030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  384. Meinhardt MW, Hansson AC, Perreau-Lenz S, Bauder-Wenz C, Stählin O, Heilig M, Harper C, Drescher KU, Spanagel R, Sommer WH (2013) Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J Neurosci. 33(7):2794–2806. https://doi.org/10.1523/jneurosci.4062-12.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  385. Bäckström P, Bachteler D, Koch S, Hyytiä P, Spanagel R (2004) mGluR5 antagonist MPEP reduces ethanol-seeking and relapse behavior. Neuropsychopharmacology 29(5):921–928. https://doi.org/10.1038/sj.npp.1300381

    Article  PubMed  CAS  Google Scholar 

  386. Bespalov AY, Dravolina OA, Sukhanov I, Zakharova E, Blokhina E, Zvartau E, Danysz W, van Heeke G, Markou A (2005) Metabotropic glutamate receptor (mGluR5) antagonist MPEP attenuated cue- and schedule-induced reinstatement of nicotine self-administration behavior in rats. Neuropharmacology 49(Suppl 1):167–178. https://doi.org/10.1016/j.neuropharm.2005.06.007

    Article  PubMed  CAS  Google Scholar 

  387. Schroeder JP, Spanos M, Stevenson JR, Besheer J, Salling M, Hodge CW (2008) Cue-induced reinstatement of alcohol-seeking behavior is associated with increased ERK1/2 phosphorylation in specific limbic brain regions: blockade by the mGluR5 antagonist MPEP. Neuropharmacology 55(4):546–554. https://doi.org/10.1016/j.neuropharm.2008.06.057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  388. Gass JT, Osborne MP, Watson NL, Brown JL, Olive MF (2009) mGluR5 antagonism attenuates methamphetamine reinforcement and prevents reinstatement of methamphetamine-seeking behavior in rats. Neuropsychopharmacology 34(4):820–833. https://doi.org/10.1038/npp.2008.140

    Article  PubMed  CAS  Google Scholar 

  389. Kumaresan V, Yuan M, Yee J, Famous KR, Anderson SM, Schmidt HD, Pierce RC (2009) Metabotropic glutamate receptor 5 (mGluR5) antagonists attenuate cocaine priming- and cue-induced reinstatement of cocaine seeking. Behav Brain Res 202(2):238–244. https://doi.org/10.1016/j.bbr.2009.03.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  390. Sinclair CM, Cleva RM, Hood LE, Olive MF, Gass JT (2012) mGluR5 receptors in the basolateral amygdala and nucleus accumbens regulate cue-induced reinstatement of ethanol-seeking behavior. Pharmacol Biochem Behav 101(3):329–335. https://doi.org/10.1016/j.pbb.2012.01.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  391. Wang M, Yang Y, Wang CJ, Gamo NJ, Jin LE, Mazer JA, Morrison JH, Wang XJ, Arnsten AF (2013) NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron 77(4):736–749. https://doi.org/10.1016/j.neuron.2012.12.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  392. Li X, Peng XQ, Jordan CJ, Li J, Bi GH, He Y, Yang HJ, Zhang HY, Gardner EL, Xi ZX (2018) mGluR5 antagonism inhibits cocaine reinforcement and relapse by elevation of extracellular glutamate in the nucleus accumbens via a CB1 receptor mechanism. Sci Rep 8(1):3686. https://doi.org/10.1038/s41598-018-22087-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  393. Doshi A, Chataway J (2016) Multiple sclerosis, a treatable disease. Clin Med (Lond). 16(Suppl 6):s53–s59

    Article  PubMed  Google Scholar 

  394. Stojanovic IR, Kostic M, Ljubisavljevic S (2014) The role of glutamate and its receptors in multiple sclerosis. J Neural Transm (Vienna) 121(8):945–955. https://doi.org/10.1007/s00702-014-1188-0

    Article  CAS  Google Scholar 

  395. Zindler E, Zipp F (2010) Neuronal injury in chronic CNS inflammation. Best Pract Res Clin Anaesthesiol 24(4):551–562. https://doi.org/10.1016/j.bpa.2010.11.001

    Article  PubMed  CAS  Google Scholar 

  396. Yawata I, Takeuchi H, Doi Y, Liang J, Mizuno T, Suzumura A (2008) Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors. Life Sci. 82(21–22):1111–1116. https://doi.org/10.1016/j.lfs.2008.03.010

    Article  PubMed  CAS  Google Scholar 

  397. Piani D, Fontana A (1994) Involvement of the cystine transport system xc- in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J Immunol 152(7):3578–3585

    PubMed  CAS  Google Scholar 

  398. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85(10):2059–2070. https://doi.org/10.1002/jnr.21325

    Article  PubMed  CAS  Google Scholar 

  399. Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66(8):732–739

    Article  PubMed  CAS  Google Scholar 

  400. Gentile A, Musella A, De Vito F, Fresegna D, Bullitta S, Rizzo FR, Centonze D, Mandolesi G (2018) Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake. J Neuroinflammation 15(1):5. https://doi.org/10.1186/s12974-017-1048-6

    Article  PubMed  PubMed Central  Google Scholar 

  401. Matute C (2006) Oligodendrocyte NMDA receptors: a novel therapeutic target. Trends Mol Med 12(7):289–292. https://doi.org/10.1016/j.molmed.2006.05.004

    Article  PubMed  CAS  Google Scholar 

  402. Sulkowski G, Dąbrowska-Bouta B, Chalimoniuk M, Strużyńska L (2013) Effects of antagonists of glutamate receptors on pro-inflammatory cytokines in the brain cortex of rats subjected to experimental autoimmune encephalomyelitis. J Neuroimmunol 261(1–2):67–76. https://doi.org/10.1016/j.jneuroim.2013.05.006

    Article  PubMed  CAS  Google Scholar 

  403. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506

    Article  PubMed  CAS  Google Scholar 

  404. Ghosh R, Tabrizi SJ (2015) Clinical aspects of Huntington’s disease.Curr Top. Behav Neurosci 22:3–31. https://doi.org/10.1007/7854_2013_238

    Article  CAS  Google Scholar 

  405. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Anderson MA, Mody I, Olsen ML, Sofroniew MV, Khakh BS (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703. https://doi.org/10.1038/nn.3691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  406. Ben Haim L, Ceyzériat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, Ruiz M, Petit F, Houitte D, Faivre E, Vandesquille M, Aron-Badin R, Dhenain M, Déglon N, Hantraye P, Brouillet E, Bonvento G, Escartin C (2015) The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci 35(6):2817–2829. https://doi.org/10.1523/jneurosci.3516-14.2015

    Article  PubMed  CAS  Google Scholar 

  407. Jiang R, Diaz-Castro B, Looger LL, Khakh BS (2016) Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington’s disease model mice. J Neurosci 36(12):3453–3470. https://doi.org/10.1523/jneurosci.3693-15.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  408. Tsuang DW, Greenwood TA, Jayadev S, Davis M, Shutes-David A, Bird TD (2018) A genetic study of psychosis in Huntington’s disease: evidence for the involvement of glutamate signaling pathways. J Huntingtons Dis 7(1):51–59. https://doi.org/10.3233/jhd-170277

    Article  PubMed  Google Scholar 

  409. Parsons MP, Vanni MP, Woodard CL, Kang R, Murphy TH, Raymond LA (2016) Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nat Commun 7:11251. https://doi.org/10.1038/ncomms11251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  410. Gordon PH (2011) Amyotrophic lateral sclerosis: pathophysiology, diagnosis and management. CNS Drugs 25(1):1–15. https://doi.org/10.2165/11586000-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  411. Vandenberghe W, Robberecht W, Brorson JR (2000) AMPAreceptorcalciumpermeability, GluR2 expression, and selectivemotoneuronvulnerability. J Neurosci 20(1):123–132

    Article  PubMed  CAS  Google Scholar 

  412. Van Damme P, Van Den Bosch L, Van Houtte E, Callewaert G, Robberecht W (2002) GluR2-dependent properties ofAMPAreceptors determine the selective vulnerability ofmotor neuronsto excitotoxicity. J Neurophysiol 88(3):1279–1287

    Article  PubMed  Google Scholar 

  413. Takuma H, Kwak S, Yoshizawa T, Kanazawa I (1999) Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 46(6):806–815

    Article  PubMed  CAS  Google Scholar 

  414. Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427(6977):801

    Article  PubMed  CAS  Google Scholar 

  415. Doble A (1996) The pharmacology and mechanism of action of riluzole. Neurology 47(6 Suppl 4):S233–S241

    Article  PubMed  CAS  Google Scholar 

  416. Albo F, Pieri M, Zona C (2004) Modulation of AMPA receptors in spinal motor neurons by the neuroprotective agent riluzole. J Neurosci Res 78(2):200–207. https://doi.org/10.1002/jnr.20244

    Article  PubMed  CAS  Google Scholar 

  417. Battaglia G, Bruno V (2018) Metabotropic glutamate receptor involvement in the pathophysiology of amyotrophic lateral sclerosis: new potential drug targets for therapeutic applications. Curr Opin Pharmacol 38:65–71. https://doi.org/10.1016/j.coph.2018.02.007

    Article  PubMed  CAS  Google Scholar 

  418. de Groot J, Sontheimer H (2011) Glutamate and the biology of gliomas. Glia 59(8):1181–1189. https://doi.org/10.1002/glia.21113

    Article  PubMed  Google Scholar 

  419. Maus A, Peters GJ (2017) Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids 49(1):21–32. https://doi.org/10.1007/s00726-016-2342-9

    Article  PubMed  CAS  Google Scholar 

  420. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59(17):4383–4391

    PubMed  CAS  Google Scholar 

  421. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7(9):1010–1015

    Article  PubMed  CAS  Google Scholar 

  422. Strong AD, Indart MC, Hill NR, Daniels RL (2018) GL261 glioma tumor cells respond to ATP with an intracellular calcium rise and glutamate release. Mol Cell Biochem. https://doi.org/10.1007/s11010-018-3272-5

    Article  PubMed  Google Scholar 

  423. Robert SM, Buckingham SC, Campbell SL, Robel S, Holt KT, Ogunrinu-Babarinde T, Warren PP, White DM, Reid MA, Eschbacher JM, Berens ME, Lahti AC, Nabors LB, Sontheimer H (2015) SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci Transl Med 7(289):289ra86. https://doi.org/10.1126/scitranslmed.aaa8103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  424. Sørensen MF, Heimisdóttir SB, Sørensen MD, Mellegaard CS, Wohlleben H, Kristensen BW, Beier CP (2018) High expression of cystine-glutamate antiporter xCT (SLC7A11) is an independent biomarker for epileptic seizures at diagnosis in glioma. J Neurooncol. https://doi.org/10.1007/s11060-018-2785-9

    Article  PubMed  Google Scholar 

  425. Ortinski PI, Dong J, Mungenast A, Yue C, Takano H, Watson DJ, Haydon PG, Coulter DA (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13(5):584–591. https://doi.org/10.1038/nn.2535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  426. Zámecník J, Vargová L, Homola A, Kodet R, Syková E (2004) Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol Appl Neurobiol 30(4):338–350. https://doi.org/10.1046/j.0305-1846.2003.00541.x

    Article  PubMed  Google Scholar 

  427. Vargová L, Homola A, Zámecník J, Tichý M, Benes V, Syková E (2003) Diffusion parameters of the extracellular space in human gliomas. Glia 42(1):77–88. https://doi.org/10.1002/glia.10204

    Article  PubMed  Google Scholar 

  428. Savaskan NE, Heckel A, Hahnen E, Engelhorn T, Doerfler A, Ganslandt O, Nimsky C, Buchfelder M, Eyüpoglu IY (2008) Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat Med 14(6):629–632. https://doi.org/10.1038/nm1772

    Article  PubMed  CAS  Google Scholar 

  429. Morse AM, Garner DR (2018) Traumatic brain injury, sleep disorders, and psychiatric disorders: an underrecognized relationship. Med Sci (Basel). https://doi.org/10.3390/medsci6010015

    Article  Google Scholar 

  430. Stangeland H, Orgeta V, Bell V (2018) Poststroke psychosis: a systematic review. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2017-317327

    Article  PubMed  Google Scholar 

  431. Nucera A, Hachinski V (2018) Cerebrovascular and Alzheimer disease: fellow travelers or partners in crime? J Neurochem 144(5):513–516. https://doi.org/10.1111/jnc.14283

    Article  PubMed  CAS  Google Scholar 

  432. Klein P, Dingledine R, Aronica E, Bernard C, Blümcke I, Boison D, Brodie MJ, Brooks-Kayal AR, Engel J Jr, Forcelli PA, Hirsch LJ, Kaminski RM, Klitgaard H, Kobow K, Lowenstein DH, Pearl PL, Pitkänen A, Puhakka N, Rogawski MA, Schmidt D, Sillanpää M, Sloviter RS, Steinhäuser C, Vezzani A, Walker MC, Löscher W (2018) Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia 59(1):37–66. https://doi.org/10.1111/epi.13965

    Article  PubMed  CAS  Google Scholar 

  433. Khokhar JY, Dwiel LL, Henricks AM, Doucette WT, Green AI (2018) The link between schizophrenia and substance use disorder: a unifying hypothesis. Schizophr Res 194:78–85. https://doi.org/10.1016/j.schres.2017.04.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The laboratory of the author was supported by the Hungarian National Brain Research Program (KTIA_13_NAP-A-I/10 to BP). The author is indebted to Péter Szücs for his valuable comments on the manuscript text; as well as to the members of the Laboratory for Neurobiology (Adrienn Kovács, Tsogbadrakh Bayasgalan, Ágnes Kovács and Brigitta Baksa) for the valuable discussions in the topic.

The author declares no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Pál.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pál, B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell. Mol. Life Sci. 75, 2917–2949 (2018). https://doi.org/10.1007/s00018-018-2837-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2837-5

Keywords

Navigation