Skip to main content

Advertisement

Log in

Could Lymphocyte Profiling be Useful to Diagnose Systemic Autoimmune Diseases?

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Considering the implications of B, T, and natural killer (NK) cells in the pathophysiology of systemic autoimmune diseases, the assessment of their distribution in the blood could be helpful for physicians in the complex process of determining a precise diagnosis. In primary Sjögren’s syndrome, transitional and active naive B cells are increased and memory B cells are decreased compared to healthy controls and other systemic diseases. However, their utility to improve the accuracy of classification criteria has not been proven. In early untreated rheumatoid arthritis, proportions of regulatory T cells are constantly reduced, but other patterns are difficult to determine given the heterogeneity of published studies. In systemic lupus erythematosus, the lack of studies using large cohorts of patients and the diversity of the possible pathological mechanisms involved are also important impediments. Nevertheless, transitional B cell and plasma cell proportions are increased in most of the studies, the CD4/CD8 ratio is decreased, and the number of NK cells is reduced. Despite the low number of studies, anomalies of lymphocyte subset distribution was also described in ANCA-associated vasculitis, systemic scleroderma, and myositis. For now, flow cytometric analysis of lymphocyte subsets has focused mainly on specific subpopulations and is more useful for basic and translational research than for diagnostics in clinical practice. However, new modern methods such as mass cytometry and bioinformatics analyses may offer the possibility to simultaneously account for the relative proportions of multiple lymphocyte subsets and define a global profile in homogeneous groups of patients. The years to come will certainly incorporate such global lymphocyte profiling in reclassification of systemic autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dean PN, Pinkel D (1978) High resolution dual laser flow cytometry. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society 26(8):622–627

    Article  CAS  Google Scholar 

  2. Drapkin RL, Adreeff M, Koziner B, Strife A, Wisniewski D, Darzynkiewicz Z, Melamed MR, Clarkson B (1979) Subpopulations of human peripheral blood cells: analysis of granulocytic progenitor cells by flow cytometry and immunologic surface markers. Am J Hematol 7(2):163–172

    Article  CAS  PubMed  Google Scholar 

  3. Matutes E, Owusu-Ankomah K, Morilla R, Garcia Marco J, Houlihan A, Que TH, Catovsky D (1994) The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 8(10):1640–1645

    CAS  PubMed  Google Scholar 

  4. Goujard C, Bonarek M, Meyer L, Bonnet F, Chaix ML, Deveau C, Sinet M, Galimand J, Delfraissy JF, Venet A, Rouzioux C, Morlat P, Agence Nationale de Recherche sur le Sida PSG (2006) CD4 cell count and HIV DNA level are independent predictors of disease progression after primary HIV type 1 infection in untreated patients. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 42(5):709–715. doi:10.1086/500213

    Article  CAS  Google Scholar 

  5. Sack U, Boldt A, Mallouk N, Gruber R, Krenn V, Berger-Depince AE, Conrad K, Tarnok A, Lambert C, Reinhold D, Fricke S (2016) Cellular analyses in the monitoring of autoimmune diseases. Autoimmun Rev 15(9):883–889. doi:10.1016/j.autrev.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  6. Simonin L, Pasquier E, Leroyer C, Cornec D, Lemerle J, Bendaoud B, Hillion S, Pers J-O, Couturaud F, Renaudineau Y (2016) Lymphocyte disturbances in primary antiphospholipid syndrome and application to venous thromboembolism follow-up. Clin Rev Allergy Immunol:1–14. doi:10.1007/s12016-016-8568-1

  7. Milin M, Cornec D, Chastaing M, Griner V, Berrouiguet S, Nowak E, Marhadour T, Saraux A, Devauchelle-Pensec V (2016) Sicca symptoms are associated with similar fatigue, anxiety, depression, and quality-of-life impairments in patients with and without primary Sjogren’s syndrome. Joint Bone Spine 83(6):681–685. doi:10.1016/j.jbspin.2015.10.005

    Article  PubMed  Google Scholar 

  8. Cornec D, Devauchelle-Pensec V, Mariette X, Jousse-Joulin S, Berthelot JM, Perdriger A, Puechal X, Le Guern V, Sibilia J, Gottenberg JE, Chiche L, Hachulla E, Hatron PY, Goeb V, Hayem G, Morel J, Zarnitsky C, Dubost JJ, Saliou P, Pers Dds JO, Seror R, Saraux A (2016) Severe health-related quality-of-life impairment in active primary Sjogren’s syndrome is driven by patient-reported outcomes: Data from a large therapeutic trial. Arthritis Care Res. doi:10.1002/acr.22974

    Google Scholar 

  9. Carvajal Alegria G, Guellec D, Devauchelle-Pensec V, Saraux A (2015) Is there specific neurological disorders of primary Sjogren’s syndrome? Joint Bone Spine 82(2):86–89. doi:10.1016/j.jbspin.2014.04.002

    Article  PubMed  Google Scholar 

  10. Carvajal Alegria G, Guellec D, Mariette X, Gottenberg JE, Dernis E, Dubost JJ, Trouvin AP, Hachulla E, Larroche C, Le Guern V, Cornec D, Devauchelle-Pensec V, Saraux A (2016) Epidemiology of neurological manifestations in Sjogren’s syndrome: data from the French ASSESS cohort. RMD Open 2(1):e000179. doi:10.1136/rmdopen-2015-000179

    Article  PubMed  PubMed Central  Google Scholar 

  11. Darrieutort-Laffite C, Andre V, Hayem G, Saraux A, Le Guern V, Le Jeunne C, Puechal X (2015) Sjogren’s syndrome complicated by interstitial cystitis: a case series and literature review. Joint Bone Spine 82(4):245–250. doi:10.1016/j.jbspin.2014.12.007

    Article  PubMed  Google Scholar 

  12. Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, Daniels TE, Fox PC, Fox RI, Kassan SS, Pillemer SR, Talal N, Weisman MH, European Study Group on Classification Criteria for Sjogren’s S (2002) Classification criteria for Sjogren’s syndrome: a revised version of the European criteria proposed by the American-European consensus group. Ann Rheum Dis 61(6):554–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shiboski SC, Shiboski CH, Criswell L, Baer A, Challacombe S, Lanfranchi H, Schiodt M, Umehara H, Vivino F, Zhao Y, Dong Y, Greenspan D, Heidenreich AM, Helin P, Kirkham B, Kitagawa K, Larkin G, Li M, Lietman T, Lindegaard J, McNamara N, Sack K, Shirlaw P, Sugai S, Vollenweider C, Whitcher J, Wu A, Zhang S, Zhang W, Greenspan J, Daniels T, Sjogren’s International Collaborative Clinical Alliance Research G (2012) American College of rheumatology classification criteria for Sjogren’s syndrome: a data-driven, expert consensus approach in the Sjogren’s international collaborative clinical alliance cohort. Arthritis Care Res 64(4):475–487

    Article  CAS  Google Scholar 

  14. Cornec D, Saraux A, Cochener B, Pers JO, Jousse-Joulin S, Renaudineau Y, Marhadour T, Devauchelle-Pensec V (2014) Level of agreement between 2002 American-European consensus group and 2012 American College of Rheumatology classification criteria for Sjogren’s syndrome and reasons for discrepancies. Arthritis Res Ther 16(2):R74. doi:10.1186/ar4514

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guellec D, Cornec D, Jousse-Joulin S, Marhadour T, Marcorelles P, Pers JO, Saraux A, Devauchelle-Pensec V (2013) Diagnostic value of labial minor salivary gland biopsy for Sjogren’s syndrome: a systematic review. Autoimmun Rev 12(3):416–420. doi:10.1016/j.autrev.2012.08.001

    Article  PubMed  Google Scholar 

  16. Capaldo C, Carvajal Alegria G, Cornec D, Jousse-Joulin S, Devauchelle-Pensec V, Renaudineau Y (2016) The active immunological profile in patients with primary Sjogren’s syndrome is restricted to typically encountered autoantibodies. Clinical and experimental rheumatology

  17. Kyriakidis NC, Kapsogeorgou EK, Tzioufas AG (2014) A comprehensive review of autoantibodies in primary Sjogren’s syndrome: clinical phenotypes and regulatory mechanisms. J Autoimmun 51:67–74. doi:10.1016/j.jaut.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Cornec D, Jamin C, Pers JO (2014) Sjogren’s syndrome: where do we stand, and where shall we go? J Autoimmun 51:109–114. doi:10.1016/j.jaut.2014.02.006

    Article  PubMed  Google Scholar 

  19. Gottenberg JE, Lavie F, Abbed K, Gasnault J, Le Nevot E, Delfraissy JF, Taoufik Y, Mariette X (2005) CD4 CD25 high regulatory T cells are not impaired in patients with primary Sjogren’s syndrome. J Autoimmun 24(3):235–242. doi:10.1016/j.jaut.2005.01.015

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Li X, Qian L, Wang G, Zhang H, Wang X, Chen K, Zhai Z, Li Q, Wang Y, Harris DC (2007) T regulatory cells are markedly diminished in diseased salivary glands of patients with primary Sjogren’s syndrome. J Rheumatol 34(12):2438–2445

    PubMed  Google Scholar 

  21. Liu MF, Lin LH, Weng CT, Weng MY (2008) Decreased CD4+CD25+bright T cells in peripheral blood of patients with primary Sjogren’s syndrome. Lupus 17(1):34–39. doi:10.1177/0961203307085248

    Article  CAS  PubMed  Google Scholar 

  22. Szodoray P, Papp G, Horvath IF, Barath S, Sipka S, Nakken B, Zeher M (2009) Cells with regulatory function of the innate and adaptive immune system in primary Sjogren’s syndrome. Clin Exp Immunol 157(3):343–349. doi:10.1111/j.1365-2249.2009.03966.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li XY, Wu ZB, Ding J, Zheng ZH, Li XY, Chen LN, Zhu P (2012) Role of the frequency of blood CD4(+) CXCR5(+) CCR6(+) T cells in autoimmunity in patients with Sjogren’s syndrome. Biochem Biophys Res Commun 422(2):238–244. doi:10.1016/j.bbrc.2012.04.133

    Article  CAS  PubMed  Google Scholar 

  24. Rusakiewicz S, Nocturne G, Lazure T, Semeraro M, Flament C, Caillat-Zucman S, Sene D, Delahaye N, Vivier E, Chaba K, Poirier-Colame V, Nordmark G, Eloranta ML, Eriksson P, Theander E, Forsblad-d’Elia H, Omdal R, Wahren-Herlenius M, Jonsson R, Ronnblom L, Nititham J, Taylor KE, Lessard CJ, Sivils KL, Gottenberg JE, Criswell LA, Miceli-Richard C, Zitvogel L, Mariette X (2013) NCR3/NKp30 contributes to pathogenesis in primary Sjogren’s syndrome. Sci Transl Med 5(195):195ra196. doi:10.1126/scitranslmed.3005727

    Article  CAS  Google Scholar 

  25. Alunno A, Bistoni O, Bartoloni E, Caterbi S, Bigerna B, Tabarrini A, Mannucci R, Falini B, Gerli R (2013) IL-17-producing CD4-CD8- T cells are expanded in the peripheral blood, infiltrate salivary glands and are resistant to corticosteroids in patients with primary Sjogren’s syndrome. Ann Rheum Dis 72(2):286–292. doi:10.1136/annrheumdis-2012-201511

    Article  CAS  PubMed  Google Scholar 

  26. Szabo K, Papp G, Szanto A, Tarr T, Zeher M (2016) A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjogren’s syndrome and systemic lupus erythematosus. Clin Exp Immunol 183(1):76–89. doi:10.1111/cei.12703

    Article  CAS  PubMed  Google Scholar 

  27. Mingueneau M, Boudaoud S, Haskett S, Reynolds TL, Nocturne G, Norton E, Zhang X, Constant M, Park D, Wang W, Lazure T, Le Pajolec C, Ergun A, Mariette X (2016) Cytometry by time-of-flight immunophenotyping identifies a blood Sjogren’s signature correlating with disease activity and glandular inflammation. J Allergy Clin Immunol 137(6):1809–1821 e1812. doi:10.1016/j.jaci.2016.01.024

    Article  PubMed  Google Scholar 

  28. Singh N, Cohen PL (2012) The T cell in Sjogren’s syndrome: force majeure, not spectateur. J Autoimmun 39(3):229–233. doi:10.1016/j.jaut.2012.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bakhshi A, Miyasaka N, Kavathas P, Daniels TE, Strand CV, Herzenberg LA, Talal N (1983) Lymphocyte subsets in Sjogren’s syndrome: a quantitative analysis using monoclonal antibodies and the fluorescence-activated cell sorter. J Clin Lab Immunol 10(2):63–69

    CAS  PubMed  Google Scholar 

  30. Aziz KE, McCluskey PJ, Wakefield D (1994) Phenotypic and functional abnormalities in the peripheral blood T-cells of patients with primary Sjogren’s syndrome. Cytometry 18(1):35–41. doi:10.1002/cyto.990180108

    Article  CAS  PubMed  Google Scholar 

  31. Ferraccioli GF, Tonutti E, Casatta L, Pegoraro I, De Vita S, Sala P, Ravaioli T, Bartoli E (1996) CD4 cytopenia and occasional expansion of CD4+CD8+lymphocytes in Sjogren’s syndrome. Clin Exp Rheumatol 14(2):125–130

    CAS  PubMed  Google Scholar 

  32. Mandl T, Bredberg A, Jacobsson LT, Manthorpe R, Henriksson G (2004) CD4+ T-lymphocytopenia—a frequent finding in anti-SSA antibody seropositive patients with primary Sjogren’s syndrome. J Rheumatol 31(4):726–728

    PubMed  Google Scholar 

  33. Ichikawa Y, Shimizu H, Yoshida M, Arimori S (1990) Activation of T cell subsets in the peripheral blood of patients with Sjogren’s syndrome. Multicolor flow cytometric analysis. Arthritis Rheum 33(11):1674–1681

    Article  CAS  PubMed  Google Scholar 

  34. Moriyama M, Tanaka A, Maehara T, Furukawa S, Nakashima H, Nakamura S (2014) T helper subsets in Sjogren’s syndrome and IgG4-related dacryoadenitis and sialoadenitis: a critical review. J Autoimmun 51:81–88. doi:10.1016/j.jaut.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  35. Mitsias DI, Tzioufas AG, Veiopoulou C, Zintzaras E, Tassios IK, Kogopoulou O, Moutsopoulos HM, Thyphronitis G (2002) The Th1/Th2 cytokine balance changes with the progress of the immunopathological lesion of Sjogren’s syndrome. Clin Exp Immunol 128(3):562–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alunno A, Carubbi F, Bartoloni E, Bistoni O, Caterbi S, Cipriani P, Giacomelli R, Gerli R (2014) Unmasking the pathogenic role of IL-17 axis in primary Sjogren’s syndrome: a new era for therapeutic targeting? Autoimmun Rev 13(12):1167–1173. doi:10.1016/j.autrev.2014.08.022

    Article  CAS  PubMed  Google Scholar 

  37. Alunno A, Carubbi F, Caterbi S, Bistoni O, Bartoloni E, Giacomelli R, Gerli R (2014) The role of T helper 17 cell subsets in Sjogren’s syndrome: similarities and differences between mouse model and humans. Ann Rheum Dis 73(7):e42. doi:10.1136/annrheumdis-2014-205517

    Article  PubMed  Google Scholar 

  38. Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, Ko KH, Jiao Z, Chan VS, Lau CS, Cao X, Lu L (2015) Th17 cells play a critical role in the development of experimental Sjogren’s syndrome. Ann Rheum Dis 74(6):1302–1310. doi:10.1136/annrheumdis-2013-204584

    Article  CAS  PubMed  Google Scholar 

  39. Alunno A, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, Bigerna B, Pacini R, Beghelli D, Cipriani P, Giacomelli R, Gerli R (2014) CD4(−)CD8(−) T-cells in primary Sjogren’s syndrome: association with the extent of glandular involvement. J Autoimmun 51:38–43. doi:10.1016/j.jaut.2014.01.030

    Article  CAS  PubMed  Google Scholar 

  40. Crotty S (2011) Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29:621–663. doi:10.1146/annurev-immunol-031210-101400

    Article  CAS  PubMed  Google Scholar 

  41. Akiyama M, Suzuki K, Yamaoka K, Yasuoka H, Takeshita M, Kaneko Y, Kondo H, Kassai Y, Miyazaki T, Morita R, Yoshimura A, Takeuchi T (2015) Number of circulating follicular helper 2 T cells correlates with IgG4 and interleukin-4 levels and plasmablast numbers in IgG4-related disease. Arthritis & Rheumatology 67(9):2476–2481. doi:10.1002/art.39209

    Article  CAS  Google Scholar 

  42. Gong YZ, Nititham J, Taylor K, Miceli-Richard C, Sordet C, Wachsmann D, Bahram S, Georgel P, Criswell LA, Sibilia J, Mariette X, Alsaleh G, Gottenberg JE (2014) Differentiation of follicular helper T cells by salivary gland epithelial cells in primary Sjogren’s syndrome. J Autoimmun 51:57–66. doi:10.1016/j.jaut.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  43. Pesce S, Moretta L, Moretta A, Marcenaro E (2016) Human NK cell subsets redistribution in pathological conditions: a role for CCR7 receptor. Front Immunol 7:414. doi:10.3389/fimmu.2016.00414

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bohnhorst JO, Bjorgan MB, Thoen JE, Natvig JB, Thompson KM (2001) Bm1-Bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjogren’s syndrome. J Immunol 167(7):3610–3618

    Article  CAS  PubMed  Google Scholar 

  45. Hansen A, Odendahl M, Reiter K, Jacobi AM, Feist E, Scholze J, Burmester GR, Lipsky PE, Dorner T (2002) Diminished peripheral blood memory B cells and accumulation of memory B cells in the salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum 46(8):2160–2171. doi:10.1002/art.10445

    Article  CAS  PubMed  Google Scholar 

  46. Binard A, Le Pottier L, Devauchelle-Pensec V, Saraux A, Youinou P, Pers JO (2009) Is the blood B-cell subset profile diagnostic for Sjogren syndrome? Ann Rheum Dis 68(9):1447–1452. doi:10.1136/ard.2008.096172

    Article  CAS  PubMed  Google Scholar 

  47. Cornec D, Saraux A, Pers JO, Jousse-Joulin S, Marhadour T, Roguedas-Contios AM, Genestet S, Renaudineau Y, Devauchelle-Pensec V (2014) Diagnostic accuracy of blood B-cell subset profiling and autoimmunity markers in Sjogren’s syndrome. Arthritis Res Ther 16(1):R15. doi:10.1186/ar4442

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lin W, Jin L, Chen H, Wu Q, Fei Y, Zheng W, Wang Q, Li P, Li Y, Zhang W, Zhao Y, Zeng X, Zhang F (2014) B cell subsets and dysfunction of regulatory B cells in IgG4-related diseases and primary Sjogren’s syndrome: the similarities and differences. Arthritis Res Ther 16(3):R118. doi:10.1186/ar4571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Roberts ME, Kaminski D, Jenks SA, Maguire C, Ching K, Burbelo PD, Iadarola MJ, Rosenberg A, Coca A, Anolik J, Sanz I (2014) Primary Sjogren’s syndrome is characterized by distinct phenotypic and transcriptional profiles of IgD+ unswitched memory B cells. Arthritis & Rheumatology 66(9):2558–2569. doi:10.1002/art.38734

    Article  CAS  Google Scholar 

  50. Simon Q, Pers JO, Cornec D, Le Pottier L, Mageed RA, Hillion S (2016) In-depth characterization of CD24(high)CD38(high) transitional human B cells reveals different regulatory profiles. J Allergy Clin Immunol 137(5):1577–1584 e1510. doi:10.1016/j.jaci.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  51. Cornec D, Devauchelle-Pensec V, Tobon GJ, Pers JO, Jousse-Joulin S, Saraux A (2012) B cells in Sjogren’s syndrome: from pathophysiology to diagnosis and treatment. J Autoimmun 39(3):161–167. doi:10.1016/j.jaut.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  52. Youinou P, Pers JO (2015) Primary Sjogren’s syndrome at a glance today. Joint Bone Spine 82(2):75–76. doi:10.1016/j.jbspin.2014.10.018

    Article  PubMed  Google Scholar 

  53. Pascual V, Liu YJ, Magalski A, de Bouteiller O, Banchereau J, Capra JD (1994) Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med 180(1):329–339

    Article  CAS  PubMed  Google Scholar 

  54. Boiardi L, Salvarani C, Macchioni P, Casadei Maldini M, Mancini R, Beltrandi E, Portioli I (1996) CD8 lymphocyte subsets in active polymyalgia rheumatica: comparison with elderly-onset and adult rheumatoid arthritis and influence of prednisone therapy. Br J Rheumatol 35(7):642–648

    Article  CAS  PubMed  Google Scholar 

  55. Skapenko A, Wendler J, Lipsky PE, Kalden JR, Schulze-Koops H (1999) Altered memory T cell differentiation in patients with early rheumatoid arthritis. J Immunol 163(1):491–499

    CAS  PubMed  Google Scholar 

  56. Lawson CA, Brown AK, Bejarano V, Douglas SH, Burgoyne CH, Greenstein AS, Boylston AW, Emery P, Ponchel F, Isaacs JD (2006) Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology (Oxford) 45(10):1210–1217. doi:10.1093/rheumatology/kel089

    Article  CAS  Google Scholar 

  57. Kokkonen H, Soderstrom I, Rocklov J, Hallmans G, Lejon K, Rantapaa Dahlqvist S (2010) Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum 62(2):383–391. doi:10.1002/art.27186

    CAS  PubMed  Google Scholar 

  58. Kawashiri SY, Kawakami A, Okada A, Koga T, Tamai M, Yamasaki S, Nakamura H, Origuchi T, Ida H, Eguchi K (2011) CD4+CD25(high)CD127(low/−) Treg cell frequency from peripheral blood correlates with disease activity in patients with rheumatoid arthritis. J Rheumatol 38(12):2517–2521. doi:10.3899/jrheum.110283

    Article  CAS  PubMed  Google Scholar 

  59. Ma L, Liu B, Jiang Z, Jiang Y (2014) Reduced numbers of regulatory B cells are negatively correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin Rheumatol 33(2):187–195. doi:10.1007/s10067-013-2359-3

    Article  PubMed  Google Scholar 

  60. Lubbers J, van Beers-Tas MH, Vosslamber S, Turk SA, de Ridder S, Mantel E, Wesseling JG, Reijm M, van Hoogstraten IM, Bijlsma JW, van Schaardenburg D, Bontkes HJ, Verweij CL (2016) Changes in peripheral blood lymphocyte subsets during arthritis development in arthralgia patients. Arthritis Res Ther 18(1):205. doi:10.1186/s13075-016-1102-2

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chalan P, Bijzet J, Kroesen BJ, Boots AM, Brouwer E (2016) Altered natural killer cell subsets in seropositive arthralgia and early rheumatoid arthritis are associated with autoantibody status. J Rheumatol 43(6):1008–1016. doi:10.3899/jrheum.150644

    Article  PubMed  Google Scholar 

  62. Devauchelle Pensec V, Saraux A, Berthelot JM, Alapetite S, Chales G, Le Henaff C, Thorel JB, Hoang S, Nouy-Trolle I, Martin A, Baron D, Youinou P, Le Goff P (2001) Ability of hand radiographs to predict a further diagnosis of rheumatoid arthritis in patients with early arthritis. J Rheumatol 28(12):2603–2607

    CAS  PubMed  Google Scholar 

  63. Yunt ZX, Solomon JJ (2015) Lung disease in rheumatoid arthritis. Rheum Dis Clin N Am 41(2):225–236. doi:10.1016/j.rdc.2014.12.004

    Article  Google Scholar 

  64. Carvajal Alegria G, Uguen A, Genestet S, Marcorelles P, Saraux A, Cornec D (2016) New onset of rheumatoid vasculitis during abatacept therapy and subsequent improvement after rituximab. Joint Bone Spine 83(5):605–606. doi:10.1016/j.jbspin.2015.08.016

    Article  PubMed  Google Scholar 

  65. Goddard GZ, Soriano A, Gilburd B, Lidar M, Kivity S, Kopilov R, Langevitz P, Shoenfeld Y, Agmon-Levin N (2016) A novel bedside test for ACPA: the CCPoint test is moving the laboratory to the rheumatologist’s office. Immunol Res. doi:10.1007/s12026-016-8846-2

    Google Scholar 

  66. De Winter LM, Hansen WL, van Steenbergen HW, Geusens P, Lenaerts J, Somers K, Stinissen P, van der Helm-van Mil AH, Somers V (2016) Autoantibodies to two novel peptides in seronegative and early rheumatoid arthritis. Rheumatology (Oxford) 55(8):1431–1436. doi:10.1093/rheumatology/kew198

    Article  Google Scholar 

  67. McComish J, Mundy J, Sullivan T, Proudman SM, Hissaria P (2015) Changes in peripheral blood B cell subsets at diagnosis and after treatment with disease-modifying anti-rheumatic drugs in patients with rheumatoid arthritis: correlation with clinical and laboratory parameters. Int J Rheum Dis 18(4):421–432. doi:10.1111/1756-185X.12325

    Article  CAS  PubMed  Google Scholar 

  68. Daien CI, Gailhac S, Mura T, Audo R, Combe B, Hahne M, Morel J (2014) Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity. Arthritis & Rheumatology 66(8):2037–2046. doi:10.1002/art.38666

    Article  CAS  Google Scholar 

  69. Jimeno R, Leceta J, Garin M, Ortiz AM, Mellado M, Rodriguez-Frade JM, Martinez C, Perez-Garcia S, Gomariz RP, Juarranz Y (2015) Th17 polarization of memory Th cells in early arthritis: the vasoactive intestinal peptide effect. J Leukoc Biol 98(2):257–269. doi:10.1189/jlb.3A0714-327R

    Article  CAS  PubMed  Google Scholar 

  70. Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O, Komisar O, Slonimsky E, Klang E, Lotan E, Welt M, Marai I, Shina A, Amital H, Shoenfeld Y (2015) A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun Rev 14(1):75–79. doi:10.1016/j.autrev.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  71. Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR, Bruce IN, Isenberg D, Wallace DJ, Nived O, Sturfelt G, Ramsey-Goldman R, Bae SC, Hanly JG, Sanchez-Guerrero J, Clarke A, Aranow C, Manzi S, Urowitz M, Gladman D, Kalunian K, Costner M, Werth VP, Zoma A, Bernatsky S, Ruiz-Irastorza G, Khamashta MA, Jacobsen S, Buyon JP, Maddison P, Dooley MA, van Vollenhoven RF, Ginzler E, Stoll T, Peschken C, Jorizzo JL, Callen JP, Lim SS, Fessler BJ, Inanc M, Kamen DL, Rahman A, Steinsson K, Franks AG Jr, Sigler L, Hameed S, Fang H, Pham N, Brey R, Weisman MH, McGwin G Jr, Magder LS (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686. doi:10.1002/art.34473

    Article  PubMed  PubMed Central  Google Scholar 

  72. Amezcua-Guerra LM, Higuera-Ortiz V, Arteaga-Garcia U, Gallegos-Nava S, Hubbe-Tena C (2015) Performance of the 2012 Systemic Lupus International Collaborating Clinics and the 1997 American College of Rheumatology classification criteria for systemic lupus erythematosus in a real-life scenario. ArthritisCare Res 67(3):437–441. doi:10.1002/acr.22422

    Article  Google Scholar 

  73. Ines L, Silva C, Galindo M, Lopez-Longo FJ, Terroso G, Romao VC, Rua-Figueroa I, Santos MJ, Pego-Reigosa JM, Nero P, Cerqueira M, Duarte C, Miranda LC, Bernardes M, Goncalves MJ, Mourino-Rodriguez C, Araujo F, Raposo A, Barcelos A, Couto M, Abreu P, Oton-Sanchez T, Macieira C, Ramos F, Branco JC, Silva JA, Canhao H, Calvo-Alen J, Rheumatic Diseases Registry of the Portuguese Society of R, Registry of Systemic Lupus Erythematosus Patients of the Spanish Society of R (2015) Classification of systemic lupus erythematosus: Systemic Lupus International Collaborating Clinics versus American College of Rheumatology Criteria. A comparative study of 2,055 patients from a real-life, international systemic lupus erythematosus cohort. Arthritis Care Res 67(8):1180–1185. doi:10.1002/acr.22539

    Article  Google Scholar 

  74. Yu C, Gershwin ME, Chang C (2014) Diagnostic criteria for systemic lupus erythematosus: a critical review. J Autoimmun 48-49:10–13. doi:10.1016/j.jaut.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  75. Scheinberg MA, Cathcart ES (1974) B cell and T cell lymphopenia in systemic lupus erythematosus. Cell Immunol 12(2):309–314

    Article  CAS  PubMed  Google Scholar 

  76. Erkeller-Yusel F, Hulstaart F, Hannet I, Isenberg D, Lydyard P (1993) Lymphocyte subsets in a large cohort of patients with systemic lupus erythematosus. Lupus 2(4):227–231

    Article  CAS  PubMed  Google Scholar 

  77. Erkeller-Yuksel FM, Lydyard PM, Isenberg DA (1997) Lack of NK cells in lupus patients with renal involvement. Lupus 6(9):708–712

    Article  CAS  PubMed  Google Scholar 

  78. Mortezagholi S, Babaloo Z, Rahimzadeh P, Ghaedi M, Namdari H, Assar S, Azimi Mohamadabadi M, Salehi E (2016) Evaluation of PBMC distribution and TLR9 expression in patients with systemic lupus erythematosus. Iranian journal of allergy, asthma, and immunology 15(3):229–236

    PubMed  Google Scholar 

  79. Wouters CH, Diegenant C, Ceuppens JL, Degreef H, Stevens EA (2004) The circulating lymphocyte profiles in patients with discoid lupus erythematosus and systemic lupus erythematosus suggest a pathogenetic relationship. Br J Dermatol 150(4):693–700. doi:10.1111/j.0007-0963.2004.05883.x

    Article  CAS  PubMed  Google Scholar 

  80. Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, Lipsky PE, Radbruch A, Dorner T (2000) Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 165(10):5970–5979

    Article  CAS  PubMed  Google Scholar 

  81. Wehr C, Eibel H, Masilamani M, Illges H, Schlesier M, Peter HH, Warnatz K (2004) A new CD21low B cell population in the peripheral blood of patients with SLE. Clin Immunol 113(2):161–171. doi:10.1016/j.clim.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  82. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, Lee EH, Milner EC, Sanz I (2007) A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol 178(10):6624–6633

    Article  CAS  PubMed  Google Scholar 

  83. Rodriguez-Bayona B, Ramos-Amaya A, Perez-Venegas JJ, Rodriguez C, Brieva JA (2010) Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients. Arthritis Res Ther 12(3):R108. doi:10.1186/ar3042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Malkiel S, Jeganathan V, Wolfson S, Manjarrez Orduno N, Marasco E, Aranow C, Mackay M, Gregersen PK, Diamond B (2016) Checkpoints for autoreactive B cells in the peripheral blood of lupus patients assessed by flow cytometry. Arthritis & Rheumatology 68(9):2210–2220. doi:10.1002/art.39710

    Article  CAS  Google Scholar 

  85. Renaudineau Y, Croquefer S, Jousse S, Renaudineau E, Devauchelle V, Gueguen P, Hanrotel C, Gilburd B, Saraux A, Shoenfeld Y, Putterman C, Youinou P (2006) Association of alpha-actinin-binding anti-double-stranded DNA antibodies with lupus nephritis. Arthritis Rheum 54(8):2523–2532. doi:10.1002/art.22015

    Article  CAS  PubMed  Google Scholar 

  86. Renaudineau Y, Pers JO, Bendaoud B, Jamin C, Youinou P (2004) Dysfunctional B cells in systemic lupus erythematosus. Autoimmun Rev 3(7–8):516–523. doi:10.1016/j.autrev.2004.07.035

    Article  CAS  PubMed  Google Scholar 

  87. Brooks WH, Renaudineau Y (2015) Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet 6:22. doi:10.3389/fgene.2015.00022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Fali T, Le Dantec C, Thabet Y, Jousse S, Hanrotel C, Youinou P, Brooks WH, Perl A, Renaudineau Y (2014) DNA methylation modulates HRES1/p28 expression in B cells from patients with lupus. Autoimmunity 47(4):265–271. doi:10.3109/08916934.2013.826207

    Article  CAS  PubMed  Google Scholar 

  89. Garaud S, Le Dantec C, Jousse-Joulin S, Hanrotel-Saliou C, Saraux A, Mageed RA, Youinou P, Renaudineau Y (2009) IL-6 modulates CD5 expression in B cells from patients with lupus by regulating DNA methylation. J Immunol 182(9):5623–5632. doi:10.4049/jimmunol.0802412

    Article  CAS  PubMed  Google Scholar 

  90. Taher TE, Muhammad HA, Rahim A, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA (2013) Aberrant B-lymphocyte responses in lupus: inherent or induced and potential therapeutic targets. Eur J Clin Investig 43(8):866–880. doi:10.1111/eci.12111

    Article  CAS  Google Scholar 

  91. Lazaro E, Scherlinger M, Truchetet ME, Chiche L, Schaeverbeke T, Blanco P, Richez C (2016) Biotherapies in systemic lupus erythematosus: new targets. Joint Bone Spine. doi:10.1016/j.jbspin.2016.07.004

    PubMed  Google Scholar 

  92. Chiche L, Jourde N, Thomas G, Bardin N, Bornet C, Darque A, Mancini J (2012) New treatment options for lupus—a focus on belimumab. Ther Clin Risk Manag 8:33–43. doi:10.2147/TCRM.S19819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vadasz Z, Peri R, Eiza N, Slobodin G, Balbir-Gurman A, Toubi E (2015) The expansion of CD25 high IL-10 high FoxP3 high B regulatory cells is in association with SLE disease activity. J Immunol Res 2015:254245. doi:10.1155/2015/254245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lin SC, Chen KH, Lin CH, Kuo CC, Ling QD, Chan CH (2007) The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Investig 37(12):987–996. doi:10.1111/j.1365-2362.2007.01882.x

    Article  CAS  Google Scholar 

  95. Zhang B, Zhang X, Tang FL, Zhu LP, Liu Y, Lipsky PE (2008) Clinical significance of increased CD4+CD25-Foxp3+ T cells in patients with new-onset systemic lupus erythematosus. Ann Rheum Dis 67(7):1037–1040. doi:10.1136/ard.2007.083543

    Article  CAS  PubMed  Google Scholar 

  96. Suen JL, Li HT, Jong YJ, Chiang BL, Yen JH (2009) Altered homeostasis of CD4(+) FoxP3(+) regulatory T-cell subpopulations in systemic lupus erythematosus. Immunology 127(2):196–205. doi:10.1111/j.1365-2567.2008.02937.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Park YW, Kee SJ, Cho YN, Lee EH, Lee HY, Kim EM, Shin MH, Park JJ, Kim TJ, Lee SS, Yoo DH, Kang HS (2009) Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus. Arthritis Rheum 60(6):1753–1763. doi:10.1002/art.24556

    Article  CAS  PubMed  Google Scholar 

  98. Li WX, Pan HF, Hu JL, Wang CZ, Zhang N, Li J, Li XP, Xu JH, Ye DQ (2010) Assay of T- and NK-cell subsets and the expression of NKG2A and NKG2D in patients with new-onset systemic lupus erythematosus. Clin Rheumatol 29(3):315–323. doi:10.1007/s10067-009-1322-9

    Article  PubMed  Google Scholar 

  99. Cho YN, Kee SJ, Lee SJ, Seo SR, Kim TJ, Lee SS, Kim MS, Lee WW, Yoo DH, Kim N, Park YW (2011) Numerical and functional deficiencies of natural killer T cells in systemic lupus erythematosus: their deficiency related to disease activity. Rheumatology (Oxford) 50(6):1054–1063. doi:10.1093/rheumatology/keq457

    Article  CAS  Google Scholar 

  100. Pan X, Yuan X, Zheng Y, Wang W, Shan J, Lin F, Jiang G, Yang YH, Wang D, Xu D, Shen L (2012) Increased CD45RA+ FoxP3(low) regulatory T cells with impaired suppressive function in patients with systemic lupus erythematosus. PLoS One 7(4):e34662. doi:10.1371/journal.pone.0034662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Henriques A, Teixeira L, Ines L, Carvalheiro T, Goncalves A, Martinho A, Pais ML, da Silva JA, Paiva A (2013) NK cells dysfunction in systemic lupus erythematosus: relation to disease activity. Clin Rheumatol 32(6):805–813. doi:10.1007/s10067-013-2176-8

    Article  PubMed  Google Scholar 

  102. Ma H, Zhao L, Jiang Z, Jiang Y, Feng L, Ye Z (2014) Dynamic changes in the numbers of different subsets of peripheral blood NK cells in patients with systemic lupus erythematosus following classic therapy. Clin Rheumatol 33(11):1603–1610. doi:10.1007/s10067-014-2712-1

    Article  PubMed  Google Scholar 

  103. Song LJ, Wang X, Wang XP, Li D, Ding F, Liu HX, Yu X, Li XF, Shu Q (2015) Increased Tim-3 expression on peripheral T lymphocyte subsets and association with higher disease activity in systemic lupus erythematosus. Diagn Pathol 10:71. doi:10.1186/s13000-015-0306-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Chen J, Wu M, Wang J, Li X (2015) Immunoregulation of NKT cells in systemic lupus erythematosus. JImmunol Res 2015:206731. doi:10.1155/2015/206731

    Google Scholar 

  105. Chen J, Ding L, Meng W, Yang J, Yan C, Xie J, Jing L, Li X, Fu Z (2015) Vincristine-cyclophosphamide combination therapy positively affects T-cell subset distribution in systemic lupus erythematosus patients. Medical science monitor : international medical journal of experimental and clinical research 21:505–510. doi:10.12659/MSM.893271

    Article  Google Scholar 

  106. Bakke AC, Kirkland PA, Kitridou RC, Quismorio FP Jr, Rea T, Ehresmann GR, Horwitz DA (1983) T lymphocyte subsets in systemic lupus erythematosus. Correlations with corticosteroid therapy and disease activity. Arthritis Rheum 26(6):745–750

    Article  CAS  PubMed  Google Scholar 

  107. Robak E, Niewiadomska H, Robak T, Bartkowiak J, Blonski JZ, Wozniacka A, Pomorski L, Sysa-Jedrezejowska A (2001) Lymphocyctes Tgammadelta in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity. Mediat Inflamm 10(4):179–189. doi:10.1080/09629350124724

    Article  CAS  Google Scholar 

  108. Spada R, Rojas JM, Barber DF (2015) Recent findings on the role of natural killer cells in the pathogenesis of systemic lupus erythematosus. J Leukoc Biol 98(4):479–487. doi:10.1189/jlb.4RU0315-081RR

    Article  CAS  PubMed  Google Scholar 

  109. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, Flores-Suarez LF, Gross WL, Guillevin L, Hagen EC, Hoffman GS, Jayne DR, Kallenberg CG, Lamprecht P, Langford CA, Luqmani RA, Mahr AD, Matteson EL, Merkel PA, Ozen S, Pusey CD, Rasmussen N, Rees AJ, Scott DG, Specks U, Stone JH, Takahashi K, Watts RA (2013) 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Arthritis Rheum 65(1):1–11. doi:10.1002/art.37715

    Article  CAS  PubMed  Google Scholar 

  110. Damoiseaux J, Csernok E, Rasmussen N, Moosig F, van Paassen P, Baslund B, Vermeersch P, Blockmans D, Cohen Tervaert JW, Bossuyt X (2016) Detection of antineutrophil cytoplasmic antibodies (ANCAs): a multicentre European Vasculitis Study Group (EUVAS) evaluation of the value of indirect immunofluorescence (IIF) versus antigen-specific immunoassays. Ann Rheum Dis. doi:10.1136/annrheumdis-2016-209507

    PubMed  Google Scholar 

  111. Cottin V, Bel E, Bottero P, Dalhoff K, Humbert M, Lazor R, Sinico RA, Sivasothy P, Wechsler ME, Groh M, Marchand-Adam S, Khouatra C, Wallaert B, Taille C, Delaval P, Cadranel J, Bonniaud P, Prevot G, Hirschi S, Gondouin A, Dunogue B, Chatte G, Briault C, Pagnoux C, Jayne D, Guillevin L, Cordier JF, Groupe d’Etudes et de Recherche sur les Maladies Orphelines P (2017) Revisiting the systemic vasculitis in eosinophilic granulomatosis with polyangiitis (Churg-Strauss): A study of 157 patients by the Groupe d’Etudes et de Recherche sur les maladies orphelines pulmonaires and the European Respiratory Society taskforce on eosinophilic granulomatosis with polyangiitis (Churg-Strauss). Autoimmun Rev 16(1):1–9. doi:10.1016/j.autrev.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  112. Groh M, Pagnoux C, Baldini C, Bel E, Bottero P, Cottin V, Dalhoff K, Dunogue B, Gross W, Holle J, Humbert M, Jayne D, Jennette JC, Lazor R, Mahr A, Merkel PA, Mouthon L, Sinico RA, Specks U, Vaglio A, Wechsler ME, Cordier JF, Guillevin L (2015) Eosinophilic granulomatosis with polyangiitis (Churg-Strauss) (EGPA) consensus task force recommendations for evaluation and management. European journal of internal medicine 26(7):545–553. doi:10.1016/j.ejim.2015.04.022

    Article  PubMed  Google Scholar 

  113. Greco A, De Virgilio A, Rizzo MI, Gallo A, Magliulo G, Fusconi M, Ruoppolo G, Tombolini M, Turchetta R, de Vincentiis M (2015) Microscopic polyangiitis: advances in diagnostic and therapeutic approaches. Autoimmun Rev 14(9):837–844. doi:10.1016/j.autrev.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  114. Weiner M, Segelmark M (2016) The clinical presentation and therapy of diseases related to anti-neutrophil cytoplasmic antibodies (ANCA). Autoimmun Rev 15(10):978–982. doi:10.1016/j.autrev.2016.07.016

    Article  CAS  PubMed  Google Scholar 

  115. Greco A, Rizzo MI, De Virgilio A, Gallo A, Fusconi M, Ruoppolo G, Altissimi G, De Vincentiis M (2015) Churg-Strauss syndrome. Autoimmun Rev 14(4):341–348. doi:10.1016/j.autrev.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  116. Cornec D, Cornec-Le Gall E, Fervenza FC, Specks U (2016) ANCA-associated vasculitis—clinical utility of using ANCA specificity to classify patients. Nat Rev Rheumatol 12(10):570–579. doi:10.1038/nrrheum.2016.123

    Article  CAS  PubMed  Google Scholar 

  117. Yates M, Watts RA, Bajema IM, Cid MC, Crestani B, Hauser T, Hellmich B, Holle JU, Laudien M, Little MA, Luqmani RA, Mahr A, Merkel PA, Mills J, Mooney J, Segelmark M, Tesar V, Westman K, Vaglio A, Yalcindag N, Jayne DR, Mukhtyar C (2016) EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis 75(9):1583–1594. doi:10.1136/annrheumdis-2016-209133

    Article  CAS  PubMed  Google Scholar 

  118. Kallenberg CG (2016) Usefulness of antineutrophil cytoplasmic autoantibodies in diagnosing and managing systemic vasculitis. Curr Opin Rheumatol 28(1):8–14. doi:10.1097/BOR.0000000000000233

    Article  CAS  PubMed  Google Scholar 

  119. Land J, Rutgers A, Kallenberg CG (2014) Anti-neutrophil cytoplasmic autoantibody pathogenicity revisited: pathogenic versus non-pathogenic anti-neutrophil cytoplasmic autoantibody. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association 29(4):739–745. doi:10.1093/ndt/gft416

    Article  CAS  Google Scholar 

  120. Jarrot PA, Kaplanski G (2016) Pathogenesis of ANCA-associated vasculitis: an update. Autoimmun Rev 15(7):704–713. doi:10.1016/j.autrev.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  121. Dumoitier N, Terrier B, London J, Lofek S, Mouthon L (2015) Implication of B lymphocytes in the pathogenesis of ANCA-associated vasculitides. Autoimmun Rev 14(11):996–1004. doi:10.1016/j.autrev.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  122. Thiel J, Salzer U, Hassler F, Effelsberg NM, Hentze C, Sic H, Bartsch M, Miehle N, Peter HH, Warnatz K, Schlesier M, Voll RE, Venhoff N (2013) B cell homeostasis is disturbed by immunosuppressive therapies in patients with ANCA-associated vasculitides. Autoimmunity 46(7):429–438. doi:10.3109/08916934.2013.798652

    Article  CAS  PubMed  Google Scholar 

  123. Schlesier M, Kaspar T, Gutfleisch J, Wolff-Vorbeck G, Peter HH (1995) Activated CD4+ and CD8+ T-cell subsets in Wegener’s granulomatosis. Rheumatol Int 14(5):213–219

    Article  CAS  PubMed  Google Scholar 

  124. Popa ER, Stegeman CA, Bos NA, Kallenberg CG, Tervaert JW (1999) Differential B- and T-cell activation in Wegener’s granulomatosis. J Allergy Clin Immunol 103(5 Pt 1):885–894

    Article  CAS  PubMed  Google Scholar 

  125. Hua F, Wilde B, Dolff S, Witzke O (2009) T-lymphocytes and disease mechanisms in Wegener’s granulomatosis. Kidney Blood Press Res 32(6):389–398. doi:10.1159/000256409

    Article  PubMed  Google Scholar 

  126. Berden AE, Kallenberg CG, Savage CO, Yard BA, Abdulahad WH, de Heer E, Bruijn JA, Bajema IM (2009) Cellular immunity in Wegener’s granulomatosis: characterizing T lymphocytes. Arthritis Rheum 60(6):1578–1587. doi:10.1002/art.24576

    Article  CAS  PubMed  Google Scholar 

  127. Abdulahad WH, Stegeman CA, van der Geld YM, Doornbos-van der Meer B, Limburg PC, Kallenberg CG (2007) Functional defect of circulating regulatory CD4+ T cells in patients with Wegener’s granulomatosis in remission. Arthritis Rheum 56(6):2080–2091. doi:10.1002/art.22692

    Article  CAS  PubMed  Google Scholar 

  128. Marinaki S, Kalsch AI, Grimminger P, Breedijk A, Birck R, Schmitt WH, Weiss C, van der Woude FJ, Yard BA (2006) Persistent T-cell activation and clinical correlations in patients with ANCA-associated systemic vasculitis. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 21(7):1825–1832. doi:10.1093/ndt/gfl097

    Article  CAS  Google Scholar 

  129. Abdulahad WH, van der Geld YM, Stegeman CA, Kallenberg CG (2006) Persistent expansion of CD4+ effector memory T cells in Wegener’s granulomatosis. Kidney Int 70(5):938–947. doi:10.1038/sj.ki.5001670

    Article  CAS  PubMed  Google Scholar 

  130. Wilde B, Dolff S, Cai X, Specker C, Becker J, Totsch M, Costabel U, Durig J, Kribben A, Tervaert JW, Schmid KW, Witzke O (2009) CD4+CD25+ T-cell populations expressing CD134 and GITR are associated with disease activity in patients with Wegener’s granulomatosis. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 24(1):161–171. doi:10.1093/ndt/gfn461

    Article  CAS  Google Scholar 

  131. Lamprecht P, Mueller A, Gross WL (2004) CD28- T cells display features of effector memory T cells in Wegener’s granulomatosis. Kidney Int 65(3):1113; author reply 1113-1114. doi:10.1111/j.1523-1755.2004.501_5.x

    Article  PubMed  Google Scholar 

  132. Abdulahad WH, Stegeman CA, Limburg PC, Kallenberg CG (2008) Skewed distribution of Th17 lymphocytes in patients with Wegener’s granulomatosis in remission. Arthritis Rheum 58(7):2196–2205. doi:10.1002/art.23557

    Article  PubMed  Google Scholar 

  133. de Menthon M, Lambert M, Guiard E, Tognarelli S, Bienvenu B, Karras A, Guillevin L, Caillat-Zucman S (2011) Excessive interleukin-15 transpresentation endows NKG2D+CD4+ T cells with innate-like capacity to lyse vascular endothelium in granulomatosis with polyangiitis (Wegener’s). Arthritis Rheum 63(7):2116–2126. doi:10.1002/art.30355

    Article  PubMed  CAS  Google Scholar 

  134. Braudeau C, Amouriaux K, Neel A, Herbreteau G, Salabert N, Rimbert M, Martin JC, Hemont C, Hamidou M, Josien R (2016) Persistent deficiency of circulating mucosal-associated invariant T (MAIT) cells in ANCA-associated vasculitis. J Autoimmun 70:73–79. doi:10.1016/j.jaut.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  135. Merkt W, Sturm P, Lasitschka F, Tretter T, Watzl C, Saure D, Hundemer M, Schwenger V, Blank N, Lorenz HM, Cerwenka A (2015) Peripheral blood natural killer cell percentages in granulomatosis with polyangiitis correlate with disease inactivity and stage. Arthritis Res Ther 17:337. doi:10.1186/s13075-015-0851-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Merkt W, Claus M, Blank N, Hundemer M, Cerwenka A, Lorenz HM, Watzl C (2016) Active but not inactive granulomatosis with polyangiitis is associated with decreased and phenotypically and functionally altered CD56(dim) natural killer cells. Arthritis Res Ther 18(1):204. doi:10.1186/s13075-016-1098-7

    Article  PubMed  PubMed Central  Google Scholar 

  137. Moosig F, Csernok E, Wang G, Gross WL (1998) Costimulatory molecules in Wegener’s granulomatosis (WG): lack of expression of CD28 and preferential up-regulation of its ligands B7-1 (CD80) and B7-2 (CD86) on T cells. Clin Exp Immunol 114(1):113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Land J, Abdulahad WH, Sanders JS, Stegeman CA, Heeringa P, Rutgers A (2016) Regulatory and effector B cell cytokine production in patients with relapsing granulomatosis with polyangiitis. Arthritis Res Ther 18:84. doi:10.1186/s13075-016-0978-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Wilde B, Thewissen M, Damoiseaux J, Knippenberg S, Hilhorst M, van Paassen P, Witzke O, Cohen Tervaert JW (2013) Regulatory B cells in ANCA-associated vasculitis. Ann Rheum Dis 72(8):1416–1419. doi:10.1136/annrheumdis-2012-202986

    Article  CAS  PubMed  Google Scholar 

  140. Lepse N, Abdulahad WH, Rutgers A, Kallenberg CG, Stegeman CA, Heeringa P (2014) Altered B cell balance, but unaffected B cell capacity to limit monocyte activation in anti-neutrophil cytoplasmic antibody-associated vasculitis in remission. Rheumatology (Oxford) 53(9):1683–1692. doi:10.1093/rheumatology/keu149

    Article  CAS  Google Scholar 

  141. Todd SK, Pepper RJ, Draibe J, Tanna A, Pusey CD, Mauri C, Salama AD (2014) Regulatory B cells are numerically but not functionally deficient in anti-neutrophil cytoplasm antibody-associated vasculitis. Rheumatology (Oxford) 53(9):1693–1703. doi:10.1093/rheumatology/keu136

    Article  CAS  Google Scholar 

  142. Garaud S, Taher TE, Debant M, Burgos M, Melayah S, Berthou C, Parikh K, Pers JO, Luque-Paz D, Chiocchia G, Peppelenbosch M, Isenberg DA, Youinou P, Mignen O, Renaudineau Y, Mageed RA (2016) CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes. Cell Mol Immunol. doi:10.1038/cmi.2016.42

    PubMed  Google Scholar 

  143. Bunch DO, McGregor JG, Khandoobhai NB, Aybar LT, Burkart ME, Hu Y, Hogan SL, Poulton CJ, Berg EA, Falk RJ, Nachman PH (2013) Decreased CD5(+) B cells in active ANCA vasculitis and relapse after rituximab. Clin J Am Soc Nephrol 8(3):382–391. doi:10.2215/CJN.03950412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Aybar LT, McGregor JG, Hogan SL, Hu Y, Mendoza CE, Brant EJ, Poulton CJ, Henderson CD, Falk RJ, Bunch DO (2015) Reduced CD5(+) CD24(hi) CD38(hi) and interleukin-10(+) regulatory B cells in active anti-neutrophil cytoplasmic autoantibody-associated vasculitis permit increased circulating autoantibodies. Clin Exp Immunol 180(2):178–188. doi:10.1111/cei.12483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bunch DO, Mendoza CE, Aybar LT, Kotzen ES, Colby KR, Hu Y, Hogan SL, Poulton CJ, Schmitz JL, Falk RJ, Nachman PH, Pendergraft WF, McGregor JG (2015) Gleaning relapse risk from B cell phenotype: decreased CD5+ B cells portend a shorter time to relapse after B cell depletion in patients with ANCA-associated vasculitis. Ann Rheum Dis 74(9):1784–1786. doi:10.1136/annrheumdis-2014-206756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Unizony S, Lim N, Phippard DJ, Carey VJ, Miloslavsky EM, Tchao NK, Ikle D, Asare AL, Merkel PA, Monach PA, Seo P, St Clair EW, Langford CA, Spiera R, Hoffman GS, Kallenberg CG, Specks U, Stone JH (2015) Peripheral CD5+ B cells in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis & Rheumatology 67(2):535–544. doi:10.1002/art.38916

    Article  CAS  Google Scholar 

  147. Therene C, Brenaut E, Sonbol H, Pasquier E, Saraux A, Devauchelle V, Le Moigne E, Misery L, Abasq-Thomas C (2016) Itch and systemic sclerosis: frequency, clinical characteristics and consequences. Br J Dermatol. doi:10.1111/bjd.14998

    Google Scholar 

  148. Lescoat A, Coiffier G, Rouil A, Droitcourt C, Cazalets C, de Carlan M, Perdriger A, Jego P (2016) Vascular evaluation of the hand by power Doppler ultrasonography provides new predictive markers of ischemic digital ulcers in systemic sclerosis. Arthritis Care Res. doi:10.1002/acr.22965

    Google Scholar 

  149. Morales-Cardenas A, Perez-Madrid C, Arias L, Ojeda P, Mahecha MP, Rojas-Villarraga A, Carrillo-Bayona JA, Anaya JM (2016) Pulmonary involvement in systemic sclerosis. Autoimmun Rev 15(11):1094–1108. doi:10.1016/j.autrev.2016.07.025

    Article  PubMed  Google Scholar 

  150. Braun-Moscovici Y, Brun R, Braun M (2016) Systemic sclerosis and the gastrointestinal tract-clinical approach. Rambam Maimonides medical journal 7 (4). doi:10.5041/RMMJ.10258

  151. Renaudineau Y, Grunebaum E, Krause I, Praprotnik S, Revelen R, Youinou P, Blanks M, Gilburd B, Sherer Y, Luderschmidt C, Eldor A, Weksler B, Gershwin EM, Shoenfeld Y (2001) Anti-endothelial cell antibodies (AECA) in systemic sclerosis--increased sensitivity using different endothelial cell substrates and association with other autoantibodies. Autoimmunity 33(3):171–179

    Article  CAS  PubMed  Google Scholar 

  152. Dalkilic E, Dilek K, Gullulu M, Yavuz M, Karakoc Y, Yurtkuran M, Budak F, Goral G (1999) Lymphocyte phenotypes in systemic sclerosis. Ann Rheum Dis 58(11):719–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gambichler T, Tigges C, Burkert B, Hoxtermann S, Altmeyer P, Kreuter A (2010) Absolute count of T and B lymphocyte subsets is decreased in systemic sclerosis. Eur J Med Res 15(1):44–46

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ercole LP, Malvezzi M, Boaretti AC, Utiyama SR, Rachid A (2003) Analysis of lymphocyte subpopulations in systemic sclerosis. J Investig Allergol Clin Immunol 13(2):87–93

    PubMed  Google Scholar 

  155. Ingegnoli F, Trabattoni D, Saresella M, Fantini F, Clerici M (2003) Distinct immune profiles characterize patients with diffuse or limited systemic sclerosis. Clin Immunol 108(1):21–28

    Article  CAS  PubMed  Google Scholar 

  156. Artlett CM, Cox LA, Ramos RC, Dennis TN, Fortunato RA, Hummers LK, Jimenez SA, Smith JB (2002) Increased microchimeric CD4+ T lymphocytes in peripheral blood from women with systemic sclerosis. Clin Immunol 103(3 Pt 1):303–308

    Article  CAS  PubMed  Google Scholar 

  157. Fenoglio D, Battaglia F, Parodi A, Stringara S, Negrini S, Panico N, Rizzi M, Kalli F, Conteduca G, Ghio M, De Palma R, Indiveri F, Filaci G (2011) Alteration of Th17 and Treg cell subpopulations co-exist in patients affected with systemic sclerosis. Clin Immunol 139(3):249–257. doi:10.1016/j.clim.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  158. Papp G, Horvath IF, Barath S, Gyimesi E, Sipka S, Szodoray P, Zeher M (2011) Altered T-cell and regulatory cell repertoire in patients with diffuse cutaneous systemic sclerosis. Scand J Rheumatol 40(3):205–210. doi:10.3109/03009742.2010.528021

    Article  CAS  PubMed  Google Scholar 

  159. Giovannetti A, Rosato E, Renzi C, Maselli A, Gambardella L, Giammarioli AM, Palange P, Paoletti P, Pisarri S, Salsano F, Malorni W, Pierdominici M (2010) Analyses of T cell phenotype and function reveal an altered T cell homeostasis in systemic sclerosis. Correlations with disease severity and phenotypes. Clin Immunol 137(1):122–133. doi:10.1016/j.clim.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  160. Brembilla NC, Chizzolini C (2012) T cell abnormalities in systemic sclerosis with a focus on Th17 cells. Eur Cytokine Netw 23(4):128–139. doi:10.1684/ecn.2013.0325

    CAS  PubMed  Google Scholar 

  161. Rodriguez-Reyna TS, Furuzawa-Carballeda J, Cabiedes J, Fajardo-Hermosillo LD, Martinez-Reyes C, Diaz-Zamudio M, Llorente L (2012) Th17 peripheral cells are increased in diffuse cutaneous systemic sclerosis compared with limited illness: a cross-sectional study. Rheumatol Int 32(9):2653–2660. doi:10.1007/s00296-011-2056-y

    Article  PubMed  Google Scholar 

  162. Yang X, Yang J, Xing X, Wan L, Li M (2014) Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction. Arthritis Res Ther 16(1):R4. doi:10.1186/ar4430

    Article  PubMed  PubMed Central  Google Scholar 

  163. Mavropoulos A, Simopoulou T, Varna A, Liaskos C, Katsiari CG, Bogdanos DP, Sakkas LI (2016) Breg cells are numerically decreased and functionally impaired in patients with systemic sclerosis. Arthritis & Rheumatology 68(2):494–504. doi:10.1002/art.39437

    Article  CAS  Google Scholar 

  164. Lundberg IE, Miller FW, Tjarnlund A, Bottai M (2016) Diagnosis and classification of idiopathic inflammatory myopathies. J Intern Med 280(1):39–51. doi:10.1111/joim.12524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Reed AM, Ernste F (2009) The inflammatory milieu in idiopathic inflammatory myositis. Curr Rheumatol Rep 11(4):295–301

    Article  PubMed  Google Scholar 

  166. Viguier M, Fouere S, de la Salmoniere P, Rabian C, Lebbe C, Dubertret L, Morel P, Bachelez H (2003) Peripheral blood lymphocyte subset counts in patients with dermatomyositis: clinical correlations and changes following therapy. Medicine 82(2):82–86

    Article  PubMed  Google Scholar 

  167. Wang DX, Lu X, Zu N, Lin B, Wang LY, Shu XM, Ma L, Wang GC (2012) Clinical significance of peripheral blood lymphocyte subsets in patients with polymyositis and dermatomyositis. Clin Rheumatol 31(12):1691–1697. doi:10.1007/s10067-012-2075-4

    Article  CAS  PubMed  Google Scholar 

  168. Espinosa-Ortega F, Gomez-Martin D, Santana-De Anda K, Romo-Tena J, Villasenor-Ovies P, Alcocer-Varela J (2015) Quantitative T cell subsets profile in peripheral blood from patients with idiopathic inflammatory myopathies: tilting the balance towards proinflammatory and pro-apoptotic subsets. Clin Exp Immunol 179(3):520–528. doi:10.1111/cei.12475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tang X, Tian X, Zhang Y, Wu W, Tian J, Rui K, Tong J, Lu L, Xu H, Wang S (2013) Correlation between the frequency of Th17 cell and the expression of microRNA-206 in patients with dermatomyositis. Clin Dev Immunol 2013:345347. doi:10.1155/2013/345347

    PubMed  PubMed Central  Google Scholar 

  170. Ungprasert P, Crowson CS, Chowdhary VR, Ernste FC, Moder KG, Matteson EL (2016) Epidemiology of mixed connective tissue disease, 1985-2014: a population-based study. Arthritis Care Res 68(12):1843–1848. doi:10.1002/acr.22872

    Article  Google Scholar 

  171. Cappelli S, Bellando Randone S, Martinovic D, Tamas MM, Pasalic K, Allanore Y, Mosca M, Talarico R, Opris D, Kiss CG, Tausche AK, Cardarelli S, Riccieri V, Koneva O, Cuomo G, Becker MO, Sulli A, Guiducci S, Radic M, Bombardieri S, Aringer M, Cozzi F, Valesini G, Ananyeva L, Valentini G, Riemekasten G, Cutolo M, Ionescu R, Czirjak L, Damjanov N, Rednic S, Matucci Cerinic M (2012) “To be or not to be,” ten years after: evidence for mixed connective tissue disease as a distinct entity. Semin Arthritis Rheum 41(4):589–598. doi:10.1016/j.semarthrit.2011.07.010

    Article  PubMed  Google Scholar 

  172. Bodolay E, Aleksza M, Antal-Szalmas P, Vegh J, Szodoray P, Soltesz P, Szegedi A, Szekanecz Z (2002) Serum cytokine levels and type 1 and type 2 intracellular T cell cytokine profiles in mixed connective tissue disease. J Rheumatol 29(10):2136–2142

    CAS  PubMed  Google Scholar 

  173. Longhi MS, Ma Y, Grant CR, Samyn M, Gordon P, Mieli-Vergani G, Vergani D (2013) T-regs in autoimmune hepatitis-systemic lupus erythematosus/mixed connective tissue disease overlap syndrome are functionally defective and display a Th1 cytokine profile. J Autoimmun 41:146–151. doi:10.1016/j.jaut.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  174. Barath S, Sipka S, Aleksza M, Szegedi A, Szodoray P, Vegh J, Szegedi G, Bodolay E (2006) Regulatory T cells in peripheral blood of patients with mixed connective tissue disease. Scand J Rheumatol 35(4):300–304. doi:10.1080/03009740600709790

    Article  CAS  PubMed  Google Scholar 

  175. Hajas A, Barath S, Szodoray P, Nakken B, Gogolak P, Szekanecz Z, Zold E, Zeher M, Szegedi G, Bodolay E (2013) Derailed B cell homeostasis in patients with mixed connective tissue disease. Hum Immunol 74(7):833–841. doi:10.1016/j.humimm.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  176. Robinson WH, Mao R (2015) Decade in review-technology: technological advances transforming rheumatology. Nat Rev Rheumatol 11(11):626–628. doi:10.1038/nrrheum.2015.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jamin C, Le Lann L, Alvarez-Errico D, Barbarroja N, Cantaert T, Ducreux J, Dufour AM, Gerl V, Kniesch K, Neves E, Trombetta E, Alarcon-Riquelme M, Maranon C, Pers JO (2016) Multi-center harmonization of flow cytometers in the context of the European “PRECISESADS” project. Autoimmun Rev 15(11):1038–1045. doi:10.1016/j.autrev.2016.07.034

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Pr. Yves Renaudineau (Brest, France) for his invitation and support in the writing of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divi Y. K. Cornec.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

There is no funding source.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvajal Alegria, G., Gazeau, P., Hillion, S. et al. Could Lymphocyte Profiling be Useful to Diagnose Systemic Autoimmune Diseases?. Clinic Rev Allerg Immunol 53, 219–236 (2017). https://doi.org/10.1007/s12016-017-8608-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-017-8608-5

Keywords

Navigation