Skip to main content

Advertisement

Log in

Th17 peripheral cells are increased in diffuse cutaneous systemic sclerosis compared with limited illness: a cross-sectional study

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Systemic Sclerosis (SSc) is an autoimmune disease characterized by fibrosis and vasculopathy. A key feature is the presence of T cells in inflammatory lesions. To establish the differences in peripheral blood T helper (Th) subpopulations in diffuse cutaneous (dc) and limited cutaneous (lc) SSc patients, blood samples from 57 dcSSc and 78 lcSSc patients were obtained. Controls were collected from healthy volunteers (n = 16), active systemic lupus erythematosus (aSLE) patients (n = 13), and active rheumatoid arthritis (aRA) patients (n = 12). Mononuclear cells were analyzed by flow cytometry to determine Th1 (CD4+/IFN-γ+), Th2 (CD4+/IL-4+), Th17 (CD4+/IL-17+), and regulatory T cells (Tregs; CD4+/CD25+/Foxp3+) subsets. Th17 and Th1 subsets were increased in SSc groups versus healthy controls (P < 0.001) and aSLE patients (P < 0.001 for Th17 and P < 0.008 for Th1). Th2 cells were higher in dcSSc patients than in the healthy and aSLE groups (P = 0.03 and P = 0.009, respectively). Tregs were increased in the aRA group when compared with SSc patients and healthy controls (P ≤ 0.003). Patients with immunosuppressive treatment had lower numbers of Th17 and Th2 cells (P = 0.02). Our results shed further light into the preponderant role of Th17 and Th1 in patients with SSc. However, these findings certainly deserve to be studied in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Piela TH, Korn JH (1988) Lymphocyte-fibroblast adhesion induced by interferon-γ. Cell Immunol 114:149–160

    Article  PubMed  CAS  Google Scholar 

  2. Abraham D, Lupoli S, McWhirter A, Plater-Zyberk C, Piela TH, Korn JH et al (1991) Expression and function of surface antigens on scleroderma fibroblasts. Arthritis Rheum 34:1164–1172

    Article  PubMed  CAS  Google Scholar 

  3. Yurovsky VV, Wigley FM, Wise RA, White B (1996) Skewing of the CD8+ T-cell repertoire in the lungs of patients with systemic sclerosis. Hum Immunol 48:84–97

    Article  PubMed  CAS  Google Scholar 

  4. Afzali B, Lombardi G, Lechler RI, Lord GM (2007) The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 148:32–46

    Article  PubMed  CAS  Google Scholar 

  5. Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S (2009) Human Th17 cells: are they different from murine Th17 cells? Eur J Immunol 39:637–640

    Article  PubMed  CAS  Google Scholar 

  6. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: An effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688

    Article  PubMed  CAS  Google Scholar 

  7. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and RPR gamma. Immunity 28:29–39

    Article  PubMed  CAS  Google Scholar 

  8. Kurasawa K, Hirose K, Sano H, Endo H, Shinkai H, Nawata Y et al (2000) Increased interleukin-17 production in patients with systemic sclerosis. Arthriths Rheum 43:2455–2463

    Article  CAS  Google Scholar 

  9. Scala E, Pallota S, Frezzolini A, Abeni D, Barbieri C, Sampogna F et al (2004) Cytokine and chemokine levels in systemic sclerosis: relationship with cutaneous and internal organ involvement. Clin Exp Immunol 138:540–546

    Article  PubMed  CAS  Google Scholar 

  10. Duncan MR, Berman B (1989) Differential regulation of collagen, glycosaminoglycan, fibronectin, and collagenase activity production in cultured human adult dermal fibroblasts by interleukin 1-alpha and beta and tumor necrosis factor-alpha and beta 1. J Invest Dermatol 92:699–706

    Article  PubMed  CAS  Google Scholar 

  11. Piguet PF, Vesin C, Grau GE, Thompson RC (1993) Interleukin 1 receptor antagonist (IL-1ra) prevents or cures pulmonary fibrosis elicited in mice by bleomycin or silica. Cytokine 5:57–61

    Article  PubMed  CAS  Google Scholar 

  12. Duncan MR, Berman B (1991) Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant interleukin 6. J Invest Dermatol 97:686–692

    Article  PubMed  CAS  Google Scholar 

  13. Bamber B, Reife RA, Haugen HS, Clegg CH (1998) Oncostatin M stimulates excessive extracellular matrix accumulation in a transgenic mouse model of connective tissue disease. J Mol Med 76:61–69

    Article  PubMed  CAS  Google Scholar 

  14. Feghali CA, Bost KL, Boulware DW, Levy LS (1994) Control of IL-6 expression and response in fibroblasts from patients with systemic sclerosis. Autoimmunity 17:309–318

    Article  PubMed  CAS  Google Scholar 

  15. Hasegawa M, Sato S, Ihn H, Takehara K (1999) Enhanced production of interleukin-6 (IL-6), oncostatin M and soluble IL-6 receptor by cultured peripheral blood mononuclear cells from patients with systemic sclerosis. Rheumatology 38:612–617

    Article  PubMed  CAS  Google Scholar 

  16. Deleuran B, Abraham DJ (2007) Possible implication of the effector CD4+ T-cell subpopulation Th17 in the pathogenesis of systemic scleroderma. Nature Clin Practice Rheumatol 3:682–683

    Article  CAS  Google Scholar 

  17. Subcommittee for Scleroderma Criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee: Preliminary criteria for the classification of systemic sclerosis (scleroderma) (1980). Arthritis Rheum 23:581–590

  18. Koenig M, Joyal F, Fritzler MJ, Roussin A, Abrahamowickz M, Boire G et al (2008) Autoantibodies and Microvascular damage are independent predictive factors for the progression of Raynaud′s phenomenon to systemic sclerosis. A twenty-year prospective study of 586 patients, with validation of proposed criteria early systemic sclerosis. Arthritis Rheum 58:3902–3912

    Article  PubMed  Google Scholar 

  19. Simera I, Moher D, Hoey J, Schulz KF, Altman DG (2010) A catalogue of reporting guidelines for health research. Eur J Clin Invest 40:35–53

    Article  PubMed  CAS  Google Scholar 

  20. Aggarwal R, Lucas M, Fertig N, Oddis CV, Medsger TA Jr (2009) Anti-U3 RNP Autoantibodies in Systemic Sclerosis. Arthritis Rheum 60:1112–1118

    Article  PubMed  Google Scholar 

  21. Furuzawa-Carballeda J, Llorente L, Cabiedes J, Fajardo-Hermosillo L, Vargas-Rojas MI, Rodriguez-Reyna TS (2009) Th17, Th1 and Treg subsets are increased in systemic sclerosis (SSc) patients. Clin Immunol 131(Suppl.1):S115

    Google Scholar 

  22. Radstake TR, van Bon L, Broen J, Wenink M, Santegoets K, Deng Y et al (2009) The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGF-β and IFN-γ distinguishes SSc phenotypes. Plos One 4:1–9 e5903

    Article  Google Scholar 

  23. Rankin AL, Mumm JB, Murphy E, Turner S, Yu N, McClanahan TK et al (2010) IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol 184:1526–1535

    Article  PubMed  CAS  Google Scholar 

  24. Kawaguchi Y, Hara M, Wright TM (1999) Endogenous IL-1α from systemic sclerosis fibroblasts induces IL-6 and PDGF-A. J Clin Invest 103:1253–1260

    Article  PubMed  CAS  Google Scholar 

  25. Sato S, Hasegawa M, Takehara K (2001) Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J Dermatol Sci 27:140–146

    Article  PubMed  CAS  Google Scholar 

  26. Feghali CA, Bost KL, Boulware DW, Levy LS (1992) Mechanisms of pathogenesis in scleroderma. I. Overproduction of interleukin 6 by fibroblasts cultured from affected skin sites of patients with scleroderma. J Rheumatol 19:1207–1211

    PubMed  CAS  Google Scholar 

  27. Fiocco U, Rosada M, Cozzi L, Ortolani C, De Silvestro G, Ruffatti A et al (1993) Early phenotypic activation of circulating helper memory T cells in scleroderma: correlation with disease activity. Ann Rheum Dis 52:272–277

    Article  PubMed  CAS  Google Scholar 

  28. Radstake TR, van Bon L, Broen J, Wenink M, Santegoets K, Deng Y et al (2009) Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFβ expression. Plos One 4:e5981

    Article  PubMed  Google Scholar 

  29. Vargas-Rojas MI, Crispin JC, Richaud-Patin Y, Alcocer-Varela J (2008) Quantitative and qualitative normal regulatory T cells are not capable of inducing suppression in SLE patients due to T-cell resistance. Lupus 17:289–294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank INOVA Diagnostics for their support with the QUANTA Lite RNA Pol III ELISA kits.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatiana S. Rodríguez-Reyna or Janette Furuzawa-Carballeda.

Additional information

Javier Cabiedes—In memoriam.

Tatiana S. Rodríguez-Reyna and Janette Furuzawa-Carballeda contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Reyna, T.S., Furuzawa-Carballeda, J., Cabiedes, J. et al. Th17 peripheral cells are increased in diffuse cutaneous systemic sclerosis compared with limited illness: a cross-sectional study. Rheumatol Int 32, 2653–2660 (2012). https://doi.org/10.1007/s00296-011-2056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-011-2056-y

Keywords

Navigation