Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Assessment of Waterborne Amine-Coated Silver Nanoparticle (Ag-NP)-Induced Toxicity in Labeo rohita by Histological and Hematological Profiles

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

This article was retracted on 27 February 2024

This article has been updated

Abstract

Silver nanoparticles (Ag-NPs) have wide applications in the medical field; however, the toxicological effects are still poorly studied. The study was aimed to determine the effects of 15.78 nm spherical and amine-coated Ag-NPs on hematology and histology of gills and liver tissues in 28 days treated Labeo rohita (L. rohita). It was found that Ag-NPs induced alterations in the hematological parameters in a dose dependent manner. The Ag-NPs also induced histological alterations in a dose-dependent manner. In gill tissues, it induced fusion of secondary lamellae, separation of gill epithelium, fusion and necrosis of lamellar cells, hyperplasia, deformed cartilaginous skeleton, separation and lifting of epithelium, and curling of lamellae in a dose dependent manner. In the liver, Ag-NPs produced abnormalities in hepatic tissues by reducing the size of hepatocytes and nuclei, and stimulated the production of necrotic and apoptotic bodies. It was concluded that Ag-NPs are toxic to aquatic organisms and induce hematotoxicity and histopathological conditions in exposed fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Völker C, Oetken M, Oehlmann J (2013) The biological effects and possible modes of action of nanosilver, in reviews of environmental contamination and toxicology volume 223, Springer. p. 81–106. doi: 10.1007/978-1-4614-5577-6_4

  2. Woodrow Wilson dWoodrow Wilson d (2016) Nanotechnology consumer product inventory [cited 2016 28 Aprthe case; Available from: http://www.nanotechproject.org/cpi/about/analysis.

  3. Khan MS, Jabeen F, Qureshi NA, Asghar MS, Shakeel M, Noureen A (2015a) Toxicity of silver nanoparticles in fish: a critical review. J Bio Environ Sci 6(5):211–227

    Google Scholar 

  4. Schluesener JK, Schluesener HJ (2013) Nanosilver: application and novel aspects of toxicology. Arch Toxicol 87(4):569–576. doi:10.1007/s00204-012-1007-z

    Article  CAS  PubMed  Google Scholar 

  5. Taju G, Majeed SA, Nambi K, Hameed AS (2014) In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol C Pharmacol Toxicol 161:41–52. doi:10.1016/j.cbpc.2014.01.007

    Article  CAS  Google Scholar 

  6. Awasthi KK, Awasthi A, Bhoot N, John P, Sharma SK, Awasthi K (2013) Antimicrobial properties of electro-chemically stabilized organo-metallic thin films. Adv Electrochem 1(1):42–47. doi:10.1166/adel.2013.1013

    Article  Google Scholar 

  7. Smith IC, Carson BL (1977) Trace metals in the environment. Vol. 1. Arbor Science Publishers, USA

    Google Scholar 

  8. Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, Roszek B, Bisschops J, Gosens I, Van De Meent D (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicol 3(2):109–138. doi:10.1080/17435390902725914

    Article  CAS  Google Scholar 

  9. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367. doi:10.1021/es103995x

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Khan MS, Jabeen F, Asghar MS, Qureshi NA, Shakeel M, Noureen A, Shabbir S (2015) Role of nao-ceria in the amelioration of oxidative stress: current and future applications in medicine. Int J Biosci 6(8):89–109. doi:10.12692/ijb/6.8.89-109

    Article  CAS  Google Scholar 

  11. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  PubMed  Google Scholar 

  12. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Article  CAS  PubMed  Google Scholar 

  13. K-i I, Takano H, Yanagisawa R, Koike E, Shimada A (2009) Size effects of latex nanomaterials on lung inflammation in mice. Toxicol Appl Pharmacol 234(1):68–76

    Article  Google Scholar 

  14. Parish C (2013) Agency for toxic substances and disease registry doi: 10.1.1.361.6740

  15. Wan AT, Conyers R, Coombs CJ, Masterton JP (1991) Determination of silver in blood, urine, and tissues of volunteers and burn patients. Clin Chem 37(10):1683–1687

    Article  CAS  PubMed  Google Scholar 

  16. Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1):33–37. doi:10.1016/j.tox.2008.09.025

    Article  CAS  PubMed  Google Scholar 

  17. Khan MS, Qureshi NA, Jabeen F, Asghar MS, Shakeel M, Fakhar-E-Alam M (2016) Eco-friendly synthesis of silver nanoparticles through economical methods and assessment of toxicity through oxidative stress analysis in the Labeo Rohita. Biol Trace Elem Res:1–13. doi:10.1007/s12011-016-0838-5

  18. Ali D (2014) Oxidative stress-mediated apoptosis and genotoxicity induced by silver nanoparticles in freshwater snail Lymnea luteola L. Biol Trace Elem Res 162(1–3):333–341. doi:10.1007/s12011-014-0158-6

    Article  CAS  PubMed  Google Scholar 

  19. Arora S, Jain J, Rajwade J, Paknikar K (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236(3):310–318. doi:10.1016/j.taap.2009.02.020

    Article  CAS  PubMed  Google Scholar 

  20. Zhornik E, Baranova L, Drozd E, Sudas M, Chau N, Buu N, Dung T, Chizhik S, Volotovski I (2014) Silver nanoparticles induce lipid peroxidation and morphological changes in human lymphocytes surface. Biophys 59(3):380–386. doi:10.1134/s0006350914030282

    Article  CAS  Google Scholar 

  21. Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai L, Hussain SM (2008) Can silver nanoparticles be useful as potential biological labels? Nanotech 19(23):235104. doi:10.1088/0957-4484/19/23/235104

    Article  ADS  CAS  Google Scholar 

  22. Ahamed M, Alsalhi MS, Siddiqui MK (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411(23–24):1841–1848. doi:10.1016/j.cca.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  23. Zhang T, Wang L, Chen Q, Chen C (2014) Cytotoxic potential of silver nanoparticles. Yonsei Med J 55(2):283–291. doi:10.3349/ymj.2014.55.2.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100. doi:10.1016/j.toxlet.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  25. Hussain S, Hess K, Gearhart J, Geiss K, Schlager J (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 19(7):975–983. doi:10.1016/j.tiv.2005.06.034

    Article  CAS  PubMed  Google Scholar 

  26. Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20(6):567–574. doi:10.1080/08958370701874671

    Article  CAS  PubMed  Google Scholar 

  27. Recordati C, De Maglie M, Bianchessi S, Argentiere S, Cella C, Mattiello S, Cubadda F, Aureli F, D’Amato M, Raggi A (2016) Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol 13(1):1

    Google Scholar 

  28. Kataria N, Kataria AK, Pandey N, Gupta P (2010) Serum biomarkers of physiological defense against reactive oxygen species during environmental stress in Indian dromedaries. HVM Bioflux 2(2):55–60

    CAS  Google Scholar 

  29. Govindasamy R, Rahuman AA (2012) Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). J Environ Sci 24(6):1091–1098. doi:10.1016/S1001-0742(11)60845-0

    Article  CAS  Google Scholar 

  30. Lee B, Duong CN, Cho J, Lee J, Kim K, Seo Y, Kim P, Choi K, Yoon J (2012, 2012) Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). Biomed Res Int

  31. Afifi M, Saddick S, Zinada OAA (2016) Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 23(6):754–760. doi:10.1016/j.sjbs.2016.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li S-D, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5(4):496–504. doi:10.1021/mp800049w

    Article  CAS  PubMed  Google Scholar 

  33. Dobšíková R, Svobodová Z, Blahova J, Modrá H, Velíšek J (2006) Stress response to long distance transportation of common carp (Cyprinus carpio L.) Acta Vet Brno 75(3):437–448

    Article  Google Scholar 

  34. Dobšíková R, Svobodova Z, Blahova J, Modra H, Velíšek J (2009) The effect of transport on biochemical and haematological indices of common carp (Cyprinus carpio L.) Czech J Anim Sci 54(11):510–518

    Article  Google Scholar 

  35. Di Giulio RT, Hinton DE (2008) The toxicology of fishes. Crc Press. doi:10.1201/9780203647295

  36. Imani M, Halimi M, Khara H (2015) Effects of silver nanoparticles (AgNPs) on hematological parameters of rainbow trout, Oncorhynchus mykiss. Comp Clin Pathol 24(3):491–495. doi:10.1007/s00580-014-1927-5

    Article  CAS  Google Scholar 

  37. Ruane N, Bonga SW, Balm P (1999) Differences between rainbow trout and brown trout in the regulation of the pituitary–interrenal axis and physiological performance during confinement. Gen Comp Endocrinol 115(2):210–219. doi:10.1006/gcen.1999.7292

    Article  CAS  PubMed  Google Scholar 

  38. Witeska M, Kościuk B (2003) The changes in common carp blood after short-term zinc exposure. Environ Sci Pollut R 10(5):284–286. doi:10.1065/espr2003.07.161

    Article  CAS  Google Scholar 

  39. Vutukuru S (2005) Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemical profiles of the Indian major carp, Labeo rohita. Int J Environ Res Publ Health 2(3):456–462. doi:10.3390/ijerph2005030010

    Article  CAS  Google Scholar 

  40. Vinodhini R, Narayanan M (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (common carp). Int J Environ Sci Tech 5(2):179–182. doi:10.1007/bf03326011

    Article  CAS  Google Scholar 

  41. Stoskopf KM (1993) Fish medicine, 1st edition. W.B. Saunders Co., Philadelphia

    Google Scholar 

  42. Vandebriel RJ, Tonk EC, de la Fonteyne-Blankestijn LJ, Gremmer ER, Verharen HW, van der Ven LT, van Loveren H, de Jong WH (2014) Immunotoxicity of silver nanoparticles in an intravenous 28-day repeated-dose toxicity study in rats. Part Fibre Toxicol 11(1):1–9. doi:10.1186/1743-8977-11-21

    Article  CAS  Google Scholar 

  43. Adams SM (2002) Biological indicators of aquatic ecosystem stress. American Fisheries Society.

  44. Cheraghi J, Hosseini E, Hoshmandfar R, Sahraei R (2013) Hematologic parameters study of male and female rats administrated with different concentrations of silver nanoparticles. Intl J Agri Crop Sci 5(7):789

    Google Scholar 

  45. Ellsaesser C, Clem L (1986) Haematological and immunological changes in channel catfish stressed by handling and transport. J Fish Biol 28(4):511–521. doi:10.1016/0145-305x(86)90149-7

    Article  Google Scholar 

  46. Ikramullah A, Salve D, Pai G, Rathore M, Joshi D (2013) In vitro cytotoxicity testing of silver nano-particals in lymphocyte and sperm cells. Ind J Fund Appl Life Sci 3:44–47

    Google Scholar 

  47. Banaee M, Mirvagefei A, Rafei G, Majazi Amiri B (2008) Effect of sub-lethal diazinon concentrations on blood plasma biochemistry. Int J Environ Res 12(2):189–198

    Google Scholar 

  48. Abarghoei S, Hedayati SA, Ghafari Farsani H, Gerami MH (2015) Hematological responses of goldfish (Carassius auratus) to different acute concentrations of silver sulfate as a toxicant. Pollution 1(3):247–256. doi:10.7508/pj.2015.03.001

    Article  Google Scholar 

  49. Williams KM, Gokulan K, Cerniglia CE, Khare S (2016) Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J Nanobiotechnology 14(1):62. doi:10.1186/s12951-016-0214-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Soares T, Ribeiro D, Proença C, Chisté RC, Fernandes E, Freitas M (2016) Size-dependent cytotoxicity of silver nanoparticles in human neutrophils assessed by multiple analytical approaches. Life Sci 145:247–254. doi:10.1016/j.lfs.2015.12.046

    Article  CAS  PubMed  Google Scholar 

  51. Liz R, Simard J-C, Leonardi LBA, Girard D (2015) Silver nanoparticles rapidly induce atypical human neutrophil cell death by a process involving inflammatory caspases and reactive oxygen species and induce neutrophil extracellular traps release upon cell adhesion. Int Immunopharmacol 28(1):616–625. doi:10.1016/j.intimp.2015.06.030

    Article  CAS  PubMed  Google Scholar 

  52. Neumann NF, Barreda DR, Belosevic M (2000) Generation and functional analysis of distinct macrophage sub-populations from goldfish (Carassius auratus L.) kidney leukocyte cultures. Fish Shellfish Immunol 10(1):1–20. doi:10.1006/fsim.1999.0221

    Article  CAS  PubMed  Google Scholar 

  53. Rieger AM, Hall BE, Barreda DR (2010) Macrophage activation differentially modulates particle binding, phagocytosis and downstream antimicrobial mechanisms. Dev Comp Immunol 34(11):1144–1159. doi:10.1016/j.dci.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  54. Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB (2013) Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–115. doi:10.1016/j.aquatox.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  55. Rajkumar K, Kanipandian N, Thirumurugan R (2015) Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci: 1–11. doi: 10.1007/s13204-015-0417-7

  56. Al-Ghanbousi R, Ba-Omar T, Victor R (2012) Effect of deltamethrin on the gills of Aphanius dispar: a microscopic study. Tissue Cell 44(1):7–14. doi:10.1016/j.tice.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  57. Van Dyk J, Marchand M, Pieterse G, Barnhoorn IE, Bornman M (2009) Histological changes in the gills of Clarias gariepinus (Teleostei: Clariidae) from a polluted south African urban aquatic system. Afr J Aquat Sci 34(3):283–291. doi:10.2989/ajas.2009.34.3.10.986

    Article  Google Scholar 

  58. Perera S, Pathiratne A (2012) Haemato-immunological and histological responses in Nile tilapia, Oreochromis niloticus exposed to titanium dioxide nanoparticles. Sri Lanka J Aquat Sc 17: 1–18. Doi: 0.4038/sljas.v17i0.6852

  59. Salah M, Farghali AA, Azmy H, Khedr MH (2013) Biological compatibility of carbon nanotubes for treatment of pollution of Nile tilapia (Oreochromis niloticus) by lead acetate. Life Sci J 10(2)

  60. Wu Y, Zhou Q (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32(1):165–173. doi:10.1002/etc.2038

    Article  CAS  PubMed  Google Scholar 

  61. Sharifian M, Khani F, Khosravi K, Khalili M, Hedayati A (2013) Sublethal effect of nanosilver on the structure of gill of Caspian roach (Rutilus rutilus caspicus) fingerlings. Intl J Aquat Biol 1(2):55–60

    Google Scholar 

  62. Patel J, Bahadur A (2011) Histopathological manifestations of sub lethal toxicity of copper ions in Catla catla. Am-Eurasian J Toxicol Sci 4(1):01–05

    Google Scholar 

  63. Monfared AL, Soltani S (2013) Effects of silver nanoparticles administration on the liver of rainbow trout (Oncorhynchus mykiss): histological and biochemical studies. Eur J Exp Biol 3(2):285–289

    CAS  Google Scholar 

  64. Lee O, Green JM, Tyler CR (2015) Transgenic fish systems and their application in ecotoxicology. Crit Rev Toxicol 45(2):124–141. doi:10.3109/10408444.2014.965805

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhat Jabeen.

Additional information

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s12011-024-04124-5

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Qureshi, N.A., Jabeen, F. et al. RETRACTED ARTICLE: Assessment of Waterborne Amine-Coated Silver Nanoparticle (Ag-NP)-Induced Toxicity in Labeo rohita by Histological and Hematological Profiles. Biol Trace Elem Res 182, 130–139 (2018). https://doi.org/10.1007/s12011-017-1080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1080-5

Keywords

Navigation