Skip to main content

Advertisement

Log in

Nanosilver: application and novel aspects of toxicology

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Nanomaterials are a challenge to toxicology. The high diversity of novel materials and products will require extensive expertize for evaluation and regulatory efforts. Nanomaterials are of substantial scientific and economic potential. Here, we will focus on nanosilver, a material not only with medical applications, but a rapidly increasing use in surprisingly many products. Consequently, toxicological evaluation has to cover an increasing range of complex topics. The toxicology of nanosilver is advancing rapidly; regulatory efforts by Federal Drug Agency and European Environment Protection Agencies are substantial. Current toxicological data, ranging from in vitro studies with cell lines to rodent experiments and ecological evaluation, are numerous, and many groups are providing continuously new data. However, standard classification based on nanosize only is neglecting nanoshape, which adds another level of complexity to the analysis of biological effects. A surprising neglect in nanosilver toxicology so far is the analysis of effects of nanosilver on amyloidosis. Amyloid diseases are widespread in humans and a severe health hazard. The known potential of silver to stimulate amyloidosis in rodents will require a timely and balanced evaluation of nanosilvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADME:

Absorption, distribution, metabolism, excretion

AD:

Alzheimer’s disease

Ag+ :

Silver ion

ALS:

Amyotrophic lateral sclerosis

BfR:

Bundesinstitut für Risikobewertung

CNS:

Central nervous system

CVO:

Cerebroventricular organ

DNA:

Deoxyribonucleic acid

EPA:

European Environment Protection Agencies

EPO:

European Patent Office

PD:

Parkinson’s disease

US-FDA:

Federal Drug Agency United States of America

NOAEL:

No observed adverse effect level

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

WHO:

World Health Organization

References

  • Alkilany AM, Lohse SE, Murphy CJ (2012) The gold standard: gold nanoparticle libraries to understand the nano–bio interface. Acc Chem Res (Epub ahead of print)

  • Alt V et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391

    Article  PubMed  CAS  Google Scholar 

  • AshaRani PV et al (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  PubMed  CAS  Google Scholar 

  • Atiyeh BS et al (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33(2):139–148

    Article  PubMed  Google Scholar 

  • Bang C, Thum T (2012) Exosomes: new players in cell–cell communication. Int J Biochem Cell Biol 44(11):2060–2064

    Article  PubMed  CAS  Google Scholar 

  • Benn T et al (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875

    Article  PubMed  CAS  Google Scholar 

  • Blaser SA et al (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409

    Article  PubMed  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71

    Article  Google Scholar 

  • Carlson C et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Article  PubMed  CAS  Google Scholar 

  • Cha H-R et al (2012) Microfabrication and optical properties of highly ordered silver nanostructures. Nanoscale Res Lett 7(1):292

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Xi T, Bai J (2007) Biological effects induced by nanosilver particles: in vivo study. Biomed Mater 2(3):S126–S128

    Article  PubMed  CAS  Google Scholar 

  • Christensen FM, Johnston HJ, Stone V, Aitken RJ, Hankin S, Peters S, Aschberger K (2010) Nano-silver–feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 4(3):284–295

    Google Scholar 

  • Come JH, Fraser PE, Lansbury PT (1993) A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc Natl Acad Sci USA 90(13):5959–5963

    Article  PubMed  CAS  Google Scholar 

  • Comfort KK et al (2011) Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 5(12):10000–10008

    Article  PubMed  CAS  Google Scholar 

  • Costa CS et al (2010) In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 342(1–2):51–56

    Article  PubMed  CAS  Google Scholar 

  • Dalby MJ et al (2007) Nanotopographical control of human osteoprogenitor differentiation. Curr Stem Cell Res Ther 2(2):129–138

    Article  PubMed  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79(1):5–18

    Article  PubMed  CAS  Google Scholar 

  • Davis IJ, Richards H, Mullany P (2005) Isolation of silver- and antibiotic-resistant Enterobacter cloacae from teeth. Oral Microbiol Immunol 20(3):191–194

    Article  PubMed  CAS  Google Scholar 

  • Egger S et al (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976

    Article  PubMed  CAS  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287

    Google Scholar 

  • Elliott C (2010) The effects of silver dressings on chronic and burns wound healing. Br J Nurs 19(15):S32–S36

    Google Scholar 

  • Elzey S, Grassian VH (2009) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 12(5):1945–1958

    Article  Google Scholar 

  • Fadeel B (2012) Clear and present danger? Engineered nanoparticles and the immune system. Swiss Med Wkly 142:w13609

    Google Scholar 

  • Faunce T, Watal A (2010) Nanosilver and global public health: international regulatory issues. Nanomedicine (Lond) 5(4):617–632

    Article  CAS  Google Scholar 

  • Foldbjerg R et al (2012) Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 130(1):145–157

    Google Scholar 

  • Gatti AM (2004) Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials 25(3):385–392

    Article  PubMed  CAS  Google Scholar 

  • Giallongo G et al (2012) Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates. Nanotechnology 23(32):325604

    Article  PubMed  CAS  Google Scholar 

  • Gorensek M, Recelj P (2007) Nanosilver functionalized cotton fabric. Text Res J 77(3):138–141

    Article  CAS  Google Scholar 

  • Grant G (2007) How the 1906 Nobel Prize in Physiology or Medicine was shared between Golgi and Cajal. Brain Res Rev 55(2):490–498

    Google Scholar 

  • Griffitt RJ et al (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem SETAC 27(9):1972–1978

    Article  CAS  Google Scholar 

  • Gupta A et al (1999) Molecular basis for resistance to silver cations in Salmonella. Nat Med 5(2):183–188

    Article  PubMed  CAS  Google Scholar 

  • Hansen SF et al (2008) Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17(5):438–447

    Article  PubMed  CAS  Google Scholar 

  • Hardt F, Hellung-Larsen P (1972) Transfer amyloidosis: studies on the nature of the amyloid inducing factor in a murine transfer system. Clin Exp Immunol 10(3):487

    PubMed  CAS  Google Scholar 

  • He W et al (2012) Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33(30):7547–7555

    Article  PubMed  CAS  Google Scholar 

  • Height MJ (2009) Evaluation of hazard and exposure associated with nanosilver and other nanometal oxide pesticide products. FIFRA scientific advisory panel (SAP) open consultation meeting, pp 3–6

  • Hoffman-Kim D, Mitchel JA, Bellamkonda RV (2010) Topography, cell response, and nerve regeneration. Ann Rev Biomed Eng 12(1):203–231

    Article  CAS  Google Scholar 

  • Hoheisel SM, Diamond S, Mount D (2012) Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Environ Toxicol Chem/SETAC 31(11):2557–2563

  • Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44(39):13214–13223

    Article  PubMed  CAS  Google Scholar 

  • Hsin Y-H et al (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139

    Article  PubMed  CAS  Google Scholar 

  • Hu G, Drescher KM, Chen X-M (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:56

    PubMed  Google Scholar 

  • Hyun J et al (2008) Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol Lett 182(1–3):24–28

    Article  PubMed  CAS  Google Scholar 

  • Jana D, Mandal A, De G (2012) High Raman enhancing shape-tunable Ag nanoplates in alumina: a reliable and efficient SERS technique. ACS Appl Mater Interfaces 4(7):3330–3334

    Google Scholar 

  • Janardhanan R et al (2009) Synthesis and surface chemistry of nano silver particles. Polyhedron 28(12):2522–2530

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2–3):105–119

    Article  PubMed  CAS  Google Scholar 

  • Kang SJ et al (2012) Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity. Toxicol Appl Pharmacol 258(1):89–98

    Article  PubMed  CAS  Google Scholar 

  • Kaptay G (2012) On the size and shape dependence of the solubility of nano-particles in solutions. Int J Pharm 430(1–2):253–257

    Article  PubMed  CAS  Google Scholar 

  • Ki HY et al (2007) A study on multifunctional wool textiles treated with nano-sized silver. J Mater Sci 42(19):8020–8024

    Article  CAS  Google Scholar 

  • Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

    Google Scholar 

  • Kim K-J et al (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18(8):1482–1484

    PubMed  CAS  Google Scholar 

  • Kim K-J et al (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22(2):235–242

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Kim S, Lee S (2011) Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology 5(2):208–214

    Article  PubMed  CAS  Google Scholar 

  • Kim RS et al (2012a) E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model. Opt Express 20(12):12649–12657

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Nam S-H, An Y-J (2012b) Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicol Environ Saf 77:64–70

    Article  PubMed  CAS  Google Scholar 

  • Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3(1):340–366

    Article  CAS  Google Scholar 

  • Kristen AV et al (2010) High prevalence of amyloid in 150 surgically removed heart valves—a comparison of histological and clinical data reveals a correlation to atheroinflammatory conditions. Cardiovasc Pathol Off J Soc Cardiovasc Pathol 19(4):228–235

    Article  CAS  Google Scholar 

  • Krutyakov YA et al (2008) Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77(3):233–257

    Article  CAS  Google Scholar 

  • Lai CP, Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:1–14

    Google Scholar 

  • Lansdown A (2006) Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33:17–34

    Google Scholar 

  • Lansdown ABG (2007) Critical observations on the neurotoxicity of silver. Crit Rev Toxicol 37(3):237–250

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38(10):2199–2204

    Article  CAS  Google Scholar 

  • Lee HJ (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Text Res J 75(7):551–556

    Article  CAS  Google Scholar 

  • Lee H-H, Chou K-S, Huang K-C (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16(10):2436–2441

    Article  PubMed  CAS  Google Scholar 

  • Lee J-Y et al (2010) Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett 10(4):1276–1279

    Article  PubMed  CAS  Google Scholar 

  • Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179(19):6127–6132

    Google Scholar 

  • Li P et al (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16(9):1912–1917

    Article  CAS  Google Scholar 

  • Li Y et al (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62(1):58–63

    Article  PubMed  CAS  Google Scholar 

  • Li Q et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  PubMed  CAS  Google Scholar 

  • Lim D-H et al (2012) The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33(18):4690–4699

    Article  PubMed  CAS  Google Scholar 

  • Linse S et al (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104(21):8691–8696

    Article  PubMed  CAS  Google Scholar 

  • Lo S-F et al (2008) A systematic review of silver-releasing dressings in the management of infected chronic wounds. J Clin Nurs 17(15):1973–1985

    Google Scholar 

  • Lok C-N et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924

    Article  PubMed  CAS  Google Scholar 

  • Lok C-N et al (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A-K, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44(1):11–15

    Article  PubMed  CAS  Google Scholar 

  • Lundmark K et al (2002) Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc Natl Acad Sci USA 99(10):6979–6984

    Article  PubMed  CAS  Google Scholar 

  • Lv Y et al (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331(1–2):50–56

    Article  CAS  Google Scholar 

  • Makarava N, Baskakov IV (2012) Genesis of transmissible protein states via deformed templating. Prion 6(3):252–255. Available at http://www.landesbioscience.com/journals/prion/article/19930/?show_full_text=true

    Google Scholar 

  • Makarava N, Parfenov A, Baskakov IV (2005) Water-soluble hybrid nanoclusters with extra bright and photostable emissions: a new tool for biological imaging. Biophys J 89(1):572–580. Available at http://www.sciencedirect.com/science/article/pii/S0006349505727053

    Google Scholar 

  • Martins J, Oliva Teles L, Vasconcelos V (2007) Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environ Int 33(3):414–425

    Article  PubMed  CAS  Google Scholar 

  • Martinson ABF et al (2007) ZnO nanotube based dye-sensitized solar cells. Nano Lett 7(8):2183–2187

    Article  PubMed  CAS  Google Scholar 

  • Mehrbod P et al (2009) In vitro antiviral effect of “nanosilver” on influenza virus. DARU J Pharm Sci 17(2):88–93

    Google Scholar 

  • Meyer JN et al (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100(2):140–150

    Google Scholar 

  • Michaels JA et al (2009) A prospective randomised controlled trial and economic modelling of antimicrobial silver dressings versus non-adherent control dressings for venous leg ulcers: the VULCAN trial. Health Technol Assess (Winchester, England) 13(56):1–114 iii

    CAS  Google Scholar 

  • Moe AAK et al (2012) Microarray with micro- and nano-topographies enables identification of the optimal topography for directing the differentiation of primary murine neural progenitor. Small 8(19):1–12

    Google Scholar 

  • Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  PubMed  CAS  Google Scholar 

  • Park E-J et al (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168

    Google Scholar 

  • Park J et al (2011a) Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem Commun (Camb) 47(15):4382–4384

    Article  CAS  Google Scholar 

  • Park MVDZ et al (2011b) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817

    Article  PubMed  CAS  Google Scholar 

  • Percival SL et al (2008) Prevalence of silver resistance in bacteria isolated from diabetic foot ulcers and efficacy of silver-containing wound dressings. Ostomy Wound Manage 54(3):30–40

    PubMed  Google Scholar 

  • Quadros ME, Marr LC (2010) Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manag Assoc 60(7):770–781

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  PubMed  CAS  Google Scholar 

  • Roh J-Y et al (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43(10):3933–3940

    Article  PubMed  CAS  Google Scholar 

  • Samuel U, Guggenbichler JP (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23(Suppl 1):S75–S78

    Article  PubMed  CAS  Google Scholar 

  • Saravanan S et al (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49(2):188–193

    Google Scholar 

  • Schäfer B, Tentschert J, Luch A (2011) Nanosilver in consumer products and human health: more information required! Environ Sci Technol 45(17):7589–7590

    Article  PubMed  Google Scholar 

  • Shaluei F et al (2012) Effects of nanometer-sized silver materials on survival response of Caspian roach (Rutilus rutilus caspicus). Toxicol Ind Health 1–6

  • Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37(6):1083–1097

    Article  PubMed  CAS  Google Scholar 

  • Silver S et al (1999) Resistance to ag(i) cations in bacteria: environments, genes and proteins. Met Based Drugs 6(4–5):315–320

    Article  PubMed  CAS  Google Scholar 

  • Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581

    Article  PubMed  CAS  Google Scholar 

  • Sławiński GW, Zamborini FP (2007) Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces. Langmuir 23(20):10357–10365

    Article  PubMed  Google Scholar 

  • Stebounova LV et al (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8:1–12

    Google Scholar 

  • Sun Y, Mayers B, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3(5):675–679

    Article  CAS  Google Scholar 

  • Sung JH et al (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108(2):452–461

    Article  PubMed  CAS  Google Scholar 

  • Sun D et al (2012) Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev (Epub ahead of print)

  • Swanson LW et al (2007) A century of neuroscience discovery: reflecting on the nobel prize awarded to Golgi and Cajal in 1906. Brain Res Rev 55(2):191–192

    Article  PubMed  CAS  Google Scholar 

  • Trop M et al (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma Injury Infect Crit Care 60(3):648–652

    Article  Google Scholar 

  • Umeda N et al (1998) Failed hip prostheses in hemodialysis patients. Amyloid deposition at the bone-implant interface in 4 cases. Acta Orthop Scand 69(1):14–16

    Article  PubMed  CAS  Google Scholar 

  • Vlassov AV et al (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820(7):940–948

    Article  PubMed  CAS  Google Scholar 

  • Wang Z et al (2012) Aquatic toxicity of nanosilver colloids to different trophic organisms: contributions of particles and free silver ion. Environ Toxicol Chem/SETAC 31(10):2408–2413

    Google Scholar 

  • Wąsowicz W et al (2011) Evaluation of biological effects of nanomaterials. Part I. Cyto- and genotoxicity of nanosilver composites applied in textile technologies. Int J Occup Med Environ Health 24(4):348–358

    Article  PubMed  Google Scholar 

  • Webster TJ, Gorth D, Rand D (2011) Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomed 6:343

    Article  Google Scholar 

  • Westermark GT, Westermark P (2011) Localized amyloids important in diseases outside the brain: lessons from the islets of Langerhans and the thoracic aorta. FEBS J 278(20):3918–3929

    Google Scholar 

  • Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40(10):1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson LJ, White RJ, Chipman JK (2011) Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care 20(11):543–549

    PubMed  CAS  Google Scholar 

  • Wood J et al (2012) The modulation of canine mesenchymal stem cells by nano-topographic cues. Exp Cell Res 318:2438

    Article  PubMed  CAS  Google Scholar 

  • Woods EJ, Cochrane CA, Percival SL (2009) Prevalence of silver resistance genes in bacteria isolated from human and horse wounds. Vet Microbiol 138(3–4):325–329

    Article  PubMed  CAS  Google Scholar 

  • Yang H-L, Lin JC-T, Huang C (2009a) Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res 43(15):3777–3786

    Article  PubMed  CAS  Google Scholar 

  • Yang W et al (2009b) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20(8):085102

    Google Scholar 

  • Yang G et al (2012) Synthesis and characterization of dextran-capped silver nanoparticles with enhanced antibacterial activity. J Nanosci Nanotechnol 12(5):3766–3774

    Article  PubMed  CAS  Google Scholar 

  • Yeo M, Kang M (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29(6):1179

    Article  CAS  Google Scholar 

  • Zheng Z et al (2010) The use of BMP-2 coupled–Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 31(35):9293–9300

    Google Scholar 

  • Zimmermann M, Udagedara S, Sze C et al (2012) PcoE—a metal sponge expressed to the periplasm of copper resistance E. coli. Implication of its function role in copper resistance. J Inorg Biochem 115:186–197

    Google Scholar 

Download references

Acknowledgments

This work has been supported by a grant of the Ministerium für Wissenschaft und Kunst, Baden-Württemberg, Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan K. Schluesener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schluesener, J.K., Schluesener, H.J. Nanosilver: application and novel aspects of toxicology. Arch Toxicol 87, 569–576 (2013). https://doi.org/10.1007/s00204-012-1007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-1007-z

Keywords

Navigation