Skip to main content
Log in

Histopathological effects of waterborne silver nanoparticles and silver salt on the gills and liver of goldfish Carassius auratus

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This study aimed to compare histopathological effect of waterborne silver nanoparticles and silver salt (AgNO3) on the gills and liver of Carassius auratus. Therefore, one hundred and five live specimens of goldfish were obtained and treated in five aquariums with 0, 0.01, 0.025, 0.05, and 0.1 ppm of AgNO3 and 0, 0.1, 0.5, 1, and 5 ppm of Ag nanoparticles (mean particle size of 5 nm). Fish were sampled after 14 days of exposure. Results showed that the kinds of pathologies observed with Ag NPs were broadly of the same type as AgNO3 including hyperplasia, edema and lifting of the gill epithelium, and lamellar fusion of the gills, and hemosiderosis, hemorrhage, hydropic swelling, and pyknotic nuclei of the liver. Overall, the data showed that although Ag nanoparticles and AgNO3 pathology were similar, but Ag nanoparticles caused less injury than AgNO3 in the gills and liver of goldfish. Therefore, it is more proper to use nanoform of Ag in industrials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Attar AM (2007) The influences of nickel exposure on selected physiological parameters and gill structure in the teleost fish Oreochromis niloticus. J Biol Sci 7:77–85

    Article  CAS  Google Scholar 

  • Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB (2013) Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–115

    Article  CAS  Google Scholar 

  • Bilberg K, Malte H, Wang T, Baatrup E (2010a) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96:159–165

    Article  CAS  Google Scholar 

  • Bilberg K, Malte H, Wang T, Baatrup E (2010b) Silver nanoparticles and silver nitrate cause respiratory stress in eurasian perch (Perca fluviatilis). Aquat Toxicol 96:159–165

    Article  CAS  Google Scholar 

  • Bols NC, Brubacher JL, Ganassin RC, Lee LEG (2001) Ecotoxicology and innate immunity fish. Dev Comp Immunol 25(8–9):853–873

    Article  CAS  Google Scholar 

  • Bucke D (1982) Some histological techniques applicable to fish tissues. In: Mawdesley-Thomas LE (ed) Diseases of fish. Symposium of zoology society, London, 10, vol 30. Academic Press, New York, p 153

  • Bury NR, Wood CM (1999) Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+ channel. Am J Physiol Regul Integr Comp Physiol 277:R1385–R1391

    CAS  Google Scholar 

  • Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74

    Article  CAS  Google Scholar 

  • Coleman RL, Cearlry JE (1974) Silver toxicity and accumulation in largemouth bass and bluegill. Bull Environ Contam Toxicol 12(1):53–61

    Article  CAS  Google Scholar 

  • Connell D, Lam P, Richardson B, Wu R (1999) Introduction to ecotoxicology. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Eisler R (1996) Silver hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Department of the Interior, National Biological Service. Report 32; Biological Report 32. 44 p

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Frattini A, Pellegri N, Nicastro D, Sanctis OD (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152

    Article  CAS  Google Scholar 

  • Garcia-Santos S, Monteiro M, Carrola J, Fontainhas-Fernandes A (2007) Histopathological lesions of tilapia Oreochromis niloticus gills caused by cadmium. Arq Bras Med Vet Zoo 59:376–381

    Article  CAS  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415

    Article  CAS  Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • Handy RD, Al-Bairuty G, Al-Jubory A, Ramsden CS, Boyle D, Shaw BJ, Henry TB (2011) Effects of manufactured nanomaterials on fishes: a target organ and body systems physiology approach. J Fish Biol 79:821–853

    Article  CAS  Google Scholar 

  • Hao L, Wang Z, Xing B (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J Environ Sci 21:1459–1466

    Article  CAS  Google Scholar 

  • Hesni MA, Savari A, Sohrab AD, Mortazavi MS (2011) Gill histopathological changes in milkfish (Chanos chanos) exposed to acute toxicity of diesel oil. World Appl Sci J 14:1487–1492

    CAS  Google Scholar 

  • Janes N, Playle RC (1995) Modeling silver-binding to gills of rainbow trout (Onchorrynchus mykiss). Environ Toxicol Chem 14:1847–1858

    Article  CAS  Google Scholar 

  • Kahru A, Savolainen K (2010) Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicology 269:89–91

    Article  CAS  Google Scholar 

  • Khabbazi M, Harsij M, Hedayati SAA, Gerami MH, Ghafari-Farsani H (2014a) Histopathology of rainbow trout gills after exposure to copper. Iran J Ichthyol 1(3):191–196

    Google Scholar 

  • Khabbazi M, Harsij M, Hedayati SAA, Gholipoor H, Gerami MH, Ghafari Farsani H (2014b) Effect of CuO nanoparticles on some hematological indices of rainbow trout oncorhynchus mykiss and their potential toxicity. Nanomed J 2(1):67–73

    Google Scholar 

  • Khan RA (1998) Influence of petroleum at a refinery terminal on feral winter flounder. Pleuronectes timer iccmus. Bull. Environ. Contain. Toxicol. 61:770–777

    Article  CAS  Google Scholar 

  • Klaassen CD, Amdur MO, Doull J (eds) (1986) Casarett and Doull’s toxicology. The basic science of poisons, 3rd edn. Macmillan, New York

    Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(1825):1851

    Google Scholar 

  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single Silver Nanoparticles in early development of zebrafish embryos. ACS Nano 1(2):133–143

    Article  CAS  Google Scholar 

  • Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630–648

    Article  CAS  Google Scholar 

  • Mazon AF, Cerqueira CCC, Fernandes MN (2002) Gill cellular changes induced by copper exposure in the South American tropical freshwater fish Prochilodus scrofa. Environ Res Sect A 88:52–63

    Article  CAS  Google Scholar 

  • Mishra AK, Mohanty B (2009) Chronic exposure to sublethal hexavalent chromium affects organ histopathology and serum cortisol profile of a teleost, Channa punctatus (Bloch). Sci Total Environ 407:5031–5038

    Article  CAS  Google Scholar 

  • Mitchell SO, Baxter EJ, Holland C, Rodger HD (2012) Development of a novel histopathological gill scoring protocol for assessment of gill health during a longitudinal study in marine-farmed Atlantic salmon (Salmo salar). Aquacult Int 20:813–825

    Article  Google Scholar 

  • Moger J, Johnston BD, Tyler CR (2008) Imaging metal oxide nanoparticles in biological structures with CARS microscopy. Opt Express 16:3408–3419

    Article  CAS  Google Scholar 

  • Moitra S, Bhattacharjee R, Sen NS (2012) Histopathological changes in the gills of air breathing teleost Clarias batrachus Linn. exposed to endosulfan. Asian J Exp Sci 26:23–26

    Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Patnaik BB, Howrelia HJ, Mathews T, Selvanayagam M (2011) Histopathology of gill, liver, muscle and brain of Cyprinus carpio communis L. exposed to sublethal concentration of lead and cadmium. Afr J Biotechnol 10:12218–12223

    CAS  Google Scholar 

  • Portman JE (1972) The levels of certain metals from coastal waters around England and Wales. J Aquacult 1:91–96

    Article  Google Scholar 

  • Santos DCM, Matta SLP, Oliveira JA, Santos JAD (2011) Histological alterations in gills of Astyanax aff. bimaculatus caused by acute exposition to zinc. Exp Toxicol Pathol. doi:10.1016/j.etp.2011.03.007

  • Scown T, Santos E, Johnston B, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerel R, Tylor CR (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534

    Article  CAS  Google Scholar 

  • Ullah S, Zorriehzahra MJ (2015) Ecotoxicology: a review of pesticides induced toxicity in fish. Adv Anim Vet Sci 3(1):40–57

    Article  Google Scholar 

  • Wood CM, Hogstrand C, Galvez F, Munger RS (1996) The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquat Toxicol 35:93

    Article  CAS  Google Scholar 

  • Wood CM, Playle RC, Hogstrand C (1999). Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ Toxicol Chem 18(1):71–83

    Article  CAS  Google Scholar 

  • Yeo M-K, Kang M (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29(6):1179–1184

    Article  CAS  Google Scholar 

  • Zhou B, Nichols J, Playle RC, Wood CM (2005) An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 202:25

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by student grants from the Gorgan University of Agricultural Sciences and Natural Resources, Goran, Iran, Department of fishery. The grant number was 9121033181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hedayati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abarghoei, S., Hedayati, A., Ghorbani, R. et al. Histopathological effects of waterborne silver nanoparticles and silver salt on the gills and liver of goldfish Carassius auratus . Int. J. Environ. Sci. Technol. 13, 1753–1760 (2016). https://doi.org/10.1007/s13762-016-0972-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-0972-9

Keywords

Navigation