Skip to main content
Log in

Cloning, Expression, and Biochemical Characterization of a GH16 β-Agarase AgaH71 from Pseudoalteromonas hodoensis H7

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An agarase gene (agaH71) was identified from Pseudoalteromonas hodoensis, an agar utilizing marine bacterium. The nucleotide sequence revealed that AgaH71 had significant homology to glycosyl hydrolase (GH) 16 agarases. agaH71 encodes a primary translation product (32.7 kDa) of 290 amino acids, including a 21-amino-acid signal peptide. The entire AgaH71 was expressed in a fused protein with glutathione-S-transferase (GST) at its N-terminal (GST-AgaH71) in Escherichia coli. Purified GST-AgaH71 had an apparent molecular weight of 59 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which was consistent with the calculated molecular weight (58.7 kDa). Agarase activity of the purified protein was confirmed by zymogram assay. GST-AgaH71 could hydrolyze p-nitrophenyl-β-d-galactopyranoside, but not p-nitrophenyl-α-d-galactopyranoside. The optimum pH and temperature for GST-AgaH71 were 6.0 and 45 °C, respectively. GST-AgaH71 retained more than 95 and 90 % of its initial activity at 40 and 45 °C after heat treatment for 60 min, respectively. The K m and V max for agarose were 28.33 mg/ml and 88.25 U/mg, respectively. GST-AgaH71 did not require metal ions for its activity, but severe inhibition by divalent metal ions was observed. Thin-layer chromatography (TLC) analysis, mass spectrometry, and nuclear magnetic resonance (NMR) spectrometry of the GST-AgaH71 hydrolysis products revealed that GST-AgaH71 is an endo-type β-agarase that hydrolyzes agarose into predominantly neoagarotetraose and small proportions of neoagarobiose and neoagarohexaose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Craigie, J. (1990). Cell walls. In K. M. Cole & R. G. Sheath (Eds.), Biology of the red algae (pp. 221–258). New York: Cambridge University Press.

    Google Scholar 

  2. Hehemann, J. H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M., & Michel, G. (2010). Nature, 464, 908–912.

    Article  CAS  Google Scholar 

  3. Morrice, L. M., McLean, M. W., Long, W. F., & Williamson, F. B. (1983). European Journal of Biochemistry, 133, 673–684.

    Article  CAS  Google Scholar 

  4. Duckworth, M., & Yaphe, W. (1970). Journal of Chromatography, 49, 482–487.

    Article  CAS  Google Scholar 

  5. Chiovitti, A., Bacic, A., Craik, D. J., Kraft, G. T., & Liao, M. L. (2004). Carbohydrate Research, 339, 1459–1466.

    Article  CAS  Google Scholar 

  6. Chi, W. J., Chang, Y. K., & Hong, S. K. (2012). Applied Microbiology and Biotechnology, 94, 917–930.

    Article  CAS  Google Scholar 

  7. Hassairi, I., Ben, A. R., Nonus, M., & Gupta, B. B. (2001). Bioresource Technology, 79, 47–51.

    Article  CAS  Google Scholar 

  8. Duckworth, M., & Turvey, J. R. (1969). The Biochemical Journal, 113, 693–696.

    CAS  Google Scholar 

  9. Kang, N. Y., Choi, Y. L., Cho, Y. S., Kim, B. K., Jeon, B. S., Cha, J. Y., Kim, C. H., & Lee, Y. C. (2003). Biotechnology Letters, 25, 1165–1170.

    Article  CAS  Google Scholar 

  10. Potin, P., Richard, C., Rochas, C., & Kloareg, B. (1993). European Journal of Biochemistry, 214, 599–607.

    Article  CAS  Google Scholar 

  11. Schroeder, D. C., Jaffer, M. A., & Coyne, V. E. (2003). Microbiology, 149, 2919–2929.

    Article  CAS  Google Scholar 

  12. Aoki, T., Araki, T., & Kitamikado, M. (1990). European Journal of Biochemistry, 187, 461–465.

    Article  CAS  Google Scholar 

  13. Ohta, Y., Hatada, Y., Miyazaki, M., Nogi, Y., Ito, S., & Horikoshi, K. (2005). Current Microbiology, 50, 212–216.

  14. Suzuki, H., Sawaim, Y., Suzuki, T., & Kawai, K. (2003). Journal of Bioscience and Bioengineering, 93, 456–463.

    Article  Google Scholar 

  15. Chi, W. J., Park, J. S., Kwak, M. J., Kim, J. F., Chang, Y. K., & Hong, S. K. (2013). Journal of Microbiology and Biotechnology, 23, 1509–1518.

    Article  CAS  Google Scholar 

  16. Hosoda, A., Sakai, M., & Kanazawa, S. (2003). Bioscience Biotechnology and Biochemistry, 67, 1048–1055.

    Article  CAS  Google Scholar 

  17. Temuujin, U., Chi, W. J., Chang, Y. K., & Hong, S. K. (2012). Journal of Bacteriology, 194, 142–149.

    Article  CAS  Google Scholar 

  18. Chi, W. J., Park, J. S., Kang, D. K., & Hong, S. K. (2014). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-014-0958-3.

    Google Scholar 

  19. Petersen, T. N., von Brunak, S., Heijne, G., & Nielsen, H. (2011). Nature Methods, 8, 785–786.

    Article  CAS  Google Scholar 

  20. Temuujin, U., Chi, W. J., Lee, S. Y., Chang, Y. K., & Hong, S. K. (2011). Applied Microbiology and Biotechnology, 92, 749–759.

    Article  CAS  Google Scholar 

  21. Laemmli, U. K. (1970). Nature, 227, 680–685.

  22. Lineweaver, H., & Burk, D. (1934). Journal American Chemistry Society, 56, 658–666.

    Article  CAS  Google Scholar 

  23. Henrissat, B., & Bairoch, A. (1993). Biotechnology Journal, 293, 781–788.

    CAS  Google Scholar 

  24. Oh, C., Nikapitiya, C., Lee, Y., Whang, I., Kim, S. J., Kang, D. H., & Lee, J. (2010). Journal Industry Mirobiology and Biotechnology, 37, 483–494.

    Article  CAS  Google Scholar 

  25. Rochas, C., Lahaye, M., & Yaphe, W. (1986). Carbohydrate Research, 148, 199–207.

    Article  CAS  Google Scholar 

  26. Liang, S. S., Chen, Y. P., Chen, Y. H., Chiu, S. H., & Liaw, L. L. (2013). Journal Applied Microbiology. doi:10.1111/jam.12389.

    Google Scholar 

  27. Pluvinage, B., Hehemann, J. H., & Boraston, A. B. (2013). The Journal of Biological Chemistry, 288, 28078–28088.

    Article  CAS  Google Scholar 

  28. Ekborg, N., Taylor, L., Weiner, R., & Hutcheson, S. (2006). Applied and Environmental Microbiology, 72, 3396–3405.

    Article  CAS  Google Scholar 

  29. Ohta, Y., Hatada, Y., Nogi, Y., Miyazaki, M., Akita, M., Hidaka, Y., Goda, S., Ito, S., Horikoshi, K., & Li, Z. (2004). Applied Microbiology and Biotechnology, 64, 505–514.

    Article  CAS  Google Scholar 

  30. Dong, J., Hashikawa, S., Konishi, T., Tamaru, Y., & Araki, T. (2006). Applied and Environmental Microbiology, 72, 6399–63401.

    Article  CAS  Google Scholar 

  31. Ma, C., Lu, X., Shi, C., Li, J., Gu, Y., Ma, Y., Chu, Y., Han, F., Gong, Q., & Yu, W. (2007). The Journal of Biological Chemistry, 282, 3747–3754.

    Article  CAS  Google Scholar 

  32. Marchler-Bauer, A., et al. (2011). Nucleic Acids Research, 39, 225–229.

    Article  Google Scholar 

  33. Allouch, J., Jam, M., Helbert, W., Barbeyron, T., Kloareg, B., Henrissat, B., & Czjzek, M. (2003). 278, 47171–17180.

  34. Holmström, C., & Kjelleberg, S. (1999). FEMS Microbiology Ecology, 30, 285–293.

    Article  Google Scholar 

  35. Vera, J., Alvarez, R., Murano, E., Slebe, J. C., & Leon, O. (1998). Applied and Environmental Microbiology, 64, 4378–4383.

    CAS  Google Scholar 

  36. Oh, C., Nikapitiya, C., Lee, Y., Whang, I., Kang, D. H., Heo, S. J., Choi, Y. U., & Lee, J. (2010). Brazilian Journal of Microbiology, 41, 876–889.

    Article  CAS  Google Scholar 

  37. Oh, Y. H., Jung, C., & Lee, J. (2011). Journal of Microbiology and Biotechnology, 21, 818–821.

    Article  CAS  Google Scholar 

  38. Xiao, T. F., & Kim, S. M. (2010). Marine Drugs, 8, 200–218.

    Article  Google Scholar 

  39. Kobayashi, R., Takisada, M., Suzuki, T., Kirimura, K., & Usami, S. (1997). 61, 162–163.

  40. Lee, D. G., Jang, M. K., Lee, O. H., Kim, N. Y., Ju, S., & Lee, S. H. (2008). Biotechnology Letters, 30, 911–918.

    Article  CAS  Google Scholar 

  41. Chen, H. M., Zheng, L., & Yan, X. J. (2005). Food Technology and Biotechnology, 43, 29–36.

    CAS  Google Scholar 

  42. Wang, J., Jiang, X., Mou, H., & Guan, H. (2004). Journal of Applied Phycology, 16, 333–340.

    Article  CAS  Google Scholar 

  43. Wu, S. C., Wen, T. N., & Pan, C. L. (2005). Fisheries Science, 71, 1149–1159.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants PJ009536 from the Next-Generation Bio Green 21 Program, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kwang Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D.Y., Chi, WJ., Park, JS. et al. Cloning, Expression, and Biochemical Characterization of a GH16 β-Agarase AgaH71 from Pseudoalteromonas hodoensis H7. Appl Biochem Biotechnol 175, 733–747 (2015). https://doi.org/10.1007/s12010-014-1294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1294-3

Navigation