Skip to main content
Log in

Characterization of a Novel Neoagarobiose-Producing GH42 β-Agarase, AgaJ10, from Gayadomonas joobiniege G7

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Gayadomonas joobiniege G7 is an agar-degrading bacterium, which produces various agarases that have been biochemically characterized recently. In this study, we biochemically characterized a new β-agarase AgaJ10 belonging to the glycoside hydrolase (GH) 42 family from G. joobiniege G7. AgaJ10 is composed of 762 amino acids (89 kDa) and has the highest similarity (63% identity) to a putative β-agarase from the agar-degrading bacterium Catenovulum sp. DS-2, which was obtained from the intestines of a Haliotis diversicolor. The optimal pH and temperature for AgaJ10 activity were determined to be 5.0 and 30 °C, respectively. AgaJ10 exhibited a cold tolerance, retaining more than 40% of its enzymatic activity at 5 °C. The Km and Vmax of AgaJ10 for agarose were 61.5 mg/mL and 294.1 U/mg, respectively. Notably, the activity of AgaJ10 was significantly enhanced by Mn2+ but was strongly inhibited by some metal ions, including Fe2+, Ni2+, and Cu2+. Agarose-liquefaction, mass spectrometry, and thin-layer chromatography analyses showed that AgaJ10 is an exo-type β-agarase that hydrolyzes agarose only into neoagarobiose. Therefore, this study is the first report of a GH42 β-agarase that catalyzes a neoagarobiose-producing exo-type reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duckworth, M., & Yaphe, W. (1972). The relationship between structures and biological properties of agars. In K. Nisizawa (Ed.), Proceedings of the 7th International Seaweed Symposium (pp. 15–22). New York: Halstead Press.

    Google Scholar 

  2. Chi, W. J., Chang, Y. K., & Hong, S. K. (2012). Agar degradation by microorganisms and agar-degrading enzymes. Applied Microbiology and Biotechnology, 94(4), 917–930. https://doi.org/10.1007/s00253-012-4023-2.

    Article  CAS  PubMed  Google Scholar 

  3. Ohta, Y., Hatada, Y., Miyazaki, M., Nogi, Y., Ito, S., & Horikoshi, K. (2005). Purification and characterization of a novel α-agarase from a Thalassomonas sp. Current Microbiology, 50(4), 212–216. https://doi.org/10.1007/s00284-004-4435-z.

    Article  CAS  PubMed  Google Scholar 

  4. Potin, P., Richard, C., Rochas, C., & Kloareg, B. (1993). Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. European Journal of Biochemistry, 214(2), 599–607. https://doi.org/10.1111/j.1432-1033.1993.tb17959.x.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, W., Xu, J., Liu, D., Liu, H., Lu, X., & Yu, W. (2018). Characterization of an α-agarase from Thalassomonas sp. LD5 and its hydrolysate. Applied Microbiology and Biotechnology, 102(5), 2203–2212. https://doi.org/10.1007/s00253-018-8762-6.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, X. L., Hou, Y. P., Jin, M., Zeng, R. Y., & Lin, H. T. (2016). Expression and characterization of a novel thermostable and pH-stable β-agarase from deep-sea bacterium Flammeovirga Sp. OC4. Journal of Agricultural and Food Chemistry, 64(38), 7251–7258. https://doi.org/10.1021/acs.jafc.6b02998.

    Article  CAS  PubMed  Google Scholar 

  7. Li, J., Hu, Q., Li, Y., & Xu, Y. (2015). Purification and characterization of cold-adapted β-agarase from an Antarctic psychrophilic strain. Brazilian Journal of Microbiology, 46(3), 683–690. https://doi.org/10.1590/S1517-838246320131289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, J., Sha, Y., Seswita-Zilda, D., Hu, Q., & He, P. (2014). Purification and characterization of thermostable agarase from Bacillus sp. BI-3, a thermophilic bacterium isolated from hot spring. Journal of Microbiology and Biotechnology, 24(1), 19–25. https://doi.org/10.4014/jmb.1308.08055.

    Article  CAS  PubMed  Google Scholar 

  9. Asghar, S., Lee, C. R., Park, J. S., Chi, W. J., Kang, D. K., & Hong, S. K. (2018). Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-L-galactosidase, Ahg786, from Gayadomonas joobiniege G7. Applied Microbiology and Biotechnology, 102(20), 8855–8866. https://doi.org/10.1007/s00253-018-9277-x.

    Article  CAS  PubMed  Google Scholar 

  10. Ha, S. C., Lee, S., Lee, J., Kim, H. T., Ko, H. J., Kim, K. H., & Choi, I. G. (2011). Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochemical and Biophysical Research Communications, 412(2), 238–244. https://doi.org/10.1016/j.bbrc.2011.07.073.

    Article  CAS  PubMed  Google Scholar 

  11. Frey, P. A. (1996). The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. The FASEB Journal, 10(4), 461–470. https://doi.org/10.1096/fasebj.10.4.8647345.

    Article  CAS  PubMed  Google Scholar 

  12. Yun, E. J., Lee, S., Kim, H. T., Pelton, J. G., Kim, S., Ko, H. J., Choi, I. G., & Kim, K. H. (2015). The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environmental Microbiology, 17(5), 1677–1688. https://doi.org/10.1111/1462-2920.12607.

    Article  CAS  PubMed  Google Scholar 

  13. Jung, S., Jeong, B. C., Hong, S. K., & Lee, C. R. (2017). Cloning, expression, and biochemical characterization of a novel acidic GH16 β-agarase, AgaJ11, from Gayadomonas joobiniege G7. Applied Biochemistry and Biotechnology, 181(3), 961–971. https://doi.org/10.1007/s12010-016-2262-x.

    Article  CAS  PubMed  Google Scholar 

  14. Jung, S., Lee, C. R., Chi, W. J., Bae, C. H., & Hong, S. K. (2017). Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Applied Microbiology and Biotechnology, 101(5), 1965–1974. https://doi.org/10.1007/s00253-016-7951-4.

    Article  CAS  PubMed  Google Scholar 

  15. Lee, Y. R., Jung, S., Chi, W. J., Bae, C. H., Jeong, B. C., Hong, S. K., & Lee, C. R. (2018). Biochemical characterization of a novel GH86 β-agarase producing neoagarohexaose from Gayadomonas joobiniege G7. Journal of Microbiology and Biotechnology, 28(2), 284–292. https://doi.org/10.4014/jmb.1710.10011.

    Article  CAS  PubMed  Google Scholar 

  16. Zor, T., & Selinger, Z. (1996). Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Analytical Biochemistry, 236(2), 302–308. https://doi.org/10.1006/abio.1996.0171.

    Article  CAS  PubMed  Google Scholar 

  17. da Park, Y., Chi, W. J., Park, J. S., Chang, Y. K., & Hong, S. K. (2015). Cloning, expression, and biochemical characterization of a GH16 β-agarase AgaH71 from Pseudoalteromonas hodoensis H7. Applied Biochemistry and Biotechnology, 175(2), 733–747. https://doi.org/10.1007/s12010-014-1294-3.

    Article  CAS  PubMed  Google Scholar 

  18. Segel, I. H. (1976). Enzyme kinetics. In Biochemical calculations. How to solve mathematical problems in general biochemistry (2nd ed., pp. 214–229). New York: Wiley.

    Google Scholar 

  19. Shan, D., Li, X., Gu, Z., Wei, G., Gao, Z., & Shao, Z. (2014). Draft genome sequence of the agar-degrading bacterium Catenovulum sp. strain DS-2, isolated from intestines of Haliotis diversicolor. Genome Announcements, 2, e00144–e00114. https://doi.org/10.1128/genomeA.00145-14.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qin, Q. L., Xie, B. B., Yu, Y., Shu, Y. L., Rong, J. C., Zhang, Y. J., Zhao, D. L., Chen, X. L., Zhang, X. Y., Chen, B., Zhou, B. C., & Zhang, Y. Z. (2014). Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation. Environmental Microbiology, 16(6), 1642–1653. https://doi.org/10.1111/1462-2920.12318.

    Article  CAS  PubMed  Google Scholar 

  21. Han, W., Cheng, Y., Wang, D., Wang, S., Liu, H., Gu, J., Wu, Z., & Li, F. (2016). Biochemical characteristics and substrate degradation pattern of a novel exo-type β-agarase from the polysaccharide-degrading marine bacterium Flammeovirga sp. strain MY04. Applied and Environmental Microbiology, 82(16), 4944–4954. https://doi.org/10.1128/AEM.00393-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, H. T., Lee, S., Lee, D., Kim, H. S., Bang, W. G., Kim, K. H., & Choi, I. G. (2010). Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type β-agarase producing neoagarobiose. Applied Microbiology and Biotechnology, 86(1), 227–234. https://doi.org/10.1007/s00253-009-2256-5.

    Article  CAS  PubMed  Google Scholar 

  23. Liang, S. S., Chen, Y. P., Chen, Y. H., Chiu, S. H., & Liaw, L. L. (2014). Characterization and overexpression of a novel β-agarase from Thalassomonas agarivorans. Journal of Applied Microbiology, 116(3), 563–572. https://doi.org/10.1111/jam.12389.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, N., Mao, X., Yang, M., Mu, B., & Wei, D. (2014). Gene cloning, expression and characterisation of a new β-agarase, AgWH50C, producing neoagarobiose from Agarivorans gilvus WH0801. World Journal of Microbiology and Biotechnology, 30(6), 1691–1698. https://doi.org/10.1007/s11274-013-1591-y.

    Article  CAS  PubMed  Google Scholar 

  25. Temuujin, U., Chi, W. J., Chang, Y. K., & Hong, S. K. (2012). Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3 (2), an exo- and endo-type β-agarase-producing neoagarobiose. Journal of Bacteriology, 194(1), 142–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hafizah, N. F., Teh, A. H., & Furusawa, G. (2018). Biochemical characterization of thermostable and detergent-tolerant β-agarase, PdAgaC, from Persicobacter sp. CCB-QB2. Applied Biochemistry and Biotechnology, doi: https://doi.org/10.1007/s12010-12018-12849-12015.

  27. Liang, Y., Ma, X., Zhang, L., Li, F., Liu, Z., & Mao, X. (2017). Biochemical characterization and substrate degradation mode of a novel exotype β-agarase from Agarivorans gilvus WH0801. Journal of Agricultural and Food Chemistry, 65(36), 7982–7988. https://doi.org/10.1021/acs.jafc.7b01533.

    Article  CAS  PubMed  Google Scholar 

  28. Fu, X. T., & Kim, S. M. (2010). Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Marine Drugs, 8(1), 200–218. https://doi.org/10.3390/md8010200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hong, S. J., Lee, J. H., Kim, E. J., Yang, H. J., Park, J. S., & Hong, S. K. (2017). Anti-obesity and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced obesity in mice. Marine Drugs, 15(4), E90. https://doi.org/10.3390/md15040090.

    Article  CAS  PubMed  Google Scholar 

  30. Kobayashi, R., Takisada, M., Suzuki, T., Kirimura, K., & Usami, S. (1997). Neoagarobiose as a novel moisturizer with whitening effect. Bioscience, Biotechnology, and Biochemistry, 61(1), 162–163.

    Article  CAS  PubMed  Google Scholar 

  31. Yun, E. J., Yu, S., & Kim, K. H. (2017). Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Applied Microbiology and Biotechnology, 101(14), 5581–5589. https://doi.org/10.1007/s00253-017-8383-5.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, P., Zhang, J., Zhang, L., Sun, J., Li, Y., Wu, L., Zhou, J., Xue, C., & Mao, X. (2018). Structure-based design of agarase AgWH50C from Agarivorans gilvus WH0801 to enhance thermostability. Applied Microbiology and Biotechnology., 103(3), 1289–1298.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the 2016 Research Fund of Myongji University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ro Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, U., Jung, S., Hong, SK. et al. Characterization of a Novel Neoagarobiose-Producing GH42 β-Agarase, AgaJ10, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 189, 1–12 (2019). https://doi.org/10.1007/s12010-019-02992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02992-5

Keywords

Navigation