Skip to main content
Log in

Combined Use of Pectolytic Enzymes and Ultrasounds for Improving the Extraction of Phenolic Compounds During Vinification

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Phenolic compounds provide important quality attributes to red wines. These compounds are found inside the vacuoles of the plant cells of the skin and seeds of the grape. During maceration, they diffuse to the must/wine, although for this to happen, the vegetal cell walls need to rupture. Pectolytic enzymes and high-power ultrasound (US) may facilitate this objective. Therefore, this study analyzes the extraction efficiency of phenolic compounds using pectolytic enzymes and US (applied at 2 different times of the maceration period) alone and in combination. The chromatic characteristics of the wines were analyzed by spectrophotometry and chromatography at the end of the alcoholic fermentation and after 3 months in bottle. The treatment with enzymes alone increased the concentration of tannins by 13%, but US increased both the extraction of anthocyanins and tannins (7 and 16% respectively). The combination of enzymes and US, both applied at the beginning of the maceration time, did not improve the results of the treatments separately. However, when the enzyme was allowed to act alone during the first days of maceration before US was applied, a statistically significant synergistic effect was observed, increasing the color intensity by 18% and total phenol content by 21%, and especially marked was the effect on tannin extraction, whose concentration increased in the wines by 30% at the end of alcoholic fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bautista-Ortín, A. B., Jiménez-Pascual, E., Busse-Valverde, N., López-Roca, J. M., Ros-García, J. M., & Gómez-Plaza, E. (2013). Effect of wine maceration enzymes on the extraction of grape seed proanthocyanidins. Food and Bioprocess Technology, 6(8), 2207–2212.

    Article  Google Scholar 

  • Bautista-Ortín, A. B., Jiménez-Martínez, M. D., Jurado, R., Iniesta, J. A., Terrades, S., Andrés, A., & Gómez-Plaza, E. (2017). Application of high-power ultrasounds during red wine vinification. International Journal of Food Science & Technology, 52(6), 1314–1323.

    Article  Google Scholar 

  • Bindon, K. A., Madani, S. H., Pendleton, P., Smith, P. A., & Kennedy, J. A. (2014). Factors affecting skin tannin extractability in ripening grapes. Journal of Agricultural and Food Chemistry, 62(5), 1130–1141.

    Article  CAS  Google Scholar 

  • Bindon, K. A., Kassara, S., & Smith, P. A. (2017). Towards a model of grape tannin extraction under wine-like conditions: the role of suspended mesocarp material and anthocyanin concentration. Australian Journal of Grape and Wine Research, 23(1), 22–32.

    Article  CAS  Google Scholar 

  • Boulton, R. (2001). The copigmentation of anthocyanins and its role in the color of red wine: a critical review. American Journal of Enology and Viticulture, 52(2), 67–87.

    CAS  Google Scholar 

  • Busse-Valverde, N., Gomez-Plaza, E., Lopez-Roca, J. M., Gil-Muñoz, R., Fernández-Fernández, J. I., & Bautista-Ortín, A. B. (2010). Effect of different enological practices on skin and seed proanthocyanidins in three varietal wines. Journal of Agricultural and Food Chemistry, 58(21), 11333–11339.

    Article  CAS  Google Scholar 

  • Busse-Valverde, N., Gómez-Plaza, E., López-Roca, J. M., Gil-Muñoz, R., & Bautista-Ortín, A. B. (2011). The extraction of anthocyanins and proanthocyanidins from grapes to wine during fermentative maceration is affected by the enological technique. Journal of Agricultural and Food Chemistry, 59(10), 5450–5455.

    Article  CAS  Google Scholar 

  • Cadot, Y., Miñana-Castelló, M. T., & Chevalier, M. (2006). Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. Journal of Agricultural and Food Chemistry, 54(24), 9206–9215.

    Article  CAS  Google Scholar 

  • Castro-López, L., Gómez-Plaza, E., Ortega-Regules, A., Lozada, D., & Bautista-Ortín, A. B. (2016). Role of cell wall deconstructing enzymes in the proanthocyanidin–cell wall adsorption–desorption phenomena. Food Chemistry, 196, 526–532.

    Article  Google Scholar 

  • Dalagnol, L., Dal Magro, L., Silveira, V., Rodrigues, E., Manfroi, V., & Rodrigues, R. (2017). Combination of ultrasound, enzymes and mechanical stirring: a new method to improve Vitis vinifera Cabernet Sauvignon must yield, quality and bioactive compounds. Food and Bioproducts Processing, 105, 197–204.

    Article  CAS  Google Scholar 

  • Ferraretto, P., & Celotti, E. (2016). Preliminary study of the effects of ultrasound on red wine polyphenols. CyTA-Journal of Food, 14(4), 529–535.

    Article  CAS  Google Scholar 

  • Ferraretto, P., Cacciola, V., Batlló, I. F., & Celotti, E. (2013). Ultrasounds application in winemaking: grape maceration and yeast lysis. Italian Journal of Food Science, 25(2), 160.

    CAS  Google Scholar 

  • Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of ultrasounds in food science and technology: a perspective. Foods, 7(10), 164–182.

    Article  Google Scholar 

  • Garcia, M., Vidal, T., Tiberio, A., Lima, F., Alcantara, M., Narciso, F., & Rodrigues, S. (2013). High intensity ultrasound processing of pineapple juice. Food Bioprocess Technology, 6, 997–1006.

    Article  Google Scholar 

  • Gawel, R. (1998). Red wine astringency: a review. Australian Journal of Grape and Wine Research, 4(2), 74–95.

    Article  CAS  Google Scholar 

  • Ghafoor, K., & Choi, Y. H. (2009). Optimization of ultrasound assisted extraction of phenolic compounds and antioxidants from grape peel through response surface methodology. Journal of the Korean Society for Applied Biological Chemistry, 52(3), 295–300.

    Article  CAS  Google Scholar 

  • Ghafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57(11), 4988–4994.

    Article  CAS  Google Scholar 

  • Gil-Muñoz, R., Moreno-Pérez, A., Vila-López, R., Fernández-Fernández, J. I., Martínez-Cutillas, A., & Gómez-Plaza, E. (2009). Influence of low temperature prefermentative techniques on chromatic and phenolic characteristics of Syrah and Cabernet Sauvignon wines. European Food Research and Technology, 228(5), 777–788.

    Article  Google Scholar 

  • Glories, Y., & Saucier, C. (2001). Tannin evolution from grape to wine: effects on wine taste. In: Proceedings of the ASEV 50th Anniversary Annual Meeting, Seattle, Washington, June 19–23, 2000 (pp. 353–355). American Society for Enology and Viticulture, ASEV.

  • Gonçalves, J., Fabiano, S., Fernandes, A., de Siqueira Oliveira, M., & Alcântara de Miranda, M. R. (2015). Influence of ultrasound on fresh-cut mango quality through evaluation of enzymatic and oxidative metabolism. Food and Bioprocess Technology, 8, 1532–1542.

    Article  Google Scholar 

  • Grönroos, A., Pirkonen, P., & Ruppert, O. (2004). Ultrasonic depolymerization of aqueous carboxymethylcellulose. Ultrasonics Sonochemistry, 11(1), 9–12.

    Article  Google Scholar 

  • Haight, K. G., & Gump, B. H. (1994). The use of macerating enzymes in grape juice processing. American Journal of Enology and Viticulture, 45(1), 113–116.

    CAS  Google Scholar 

  • Hernández-Jiménez, A., Kennedy, J. A., Bautista-Ortín, A. B., & Gómez-Plaza, E. (2012). Effect of ethanol on grape seed proanthocyanidin extraction. American Journal of Enology and Viticulture, 63(1), 57–61.

    Article  Google Scholar 

  • Kennedy, J. A., & Taylor, A. W. (2003). Analysis of proanthocyanidins by high-performance gel permeation chromatography. Journal of Chromatography A, 995(1–2), 99–107.

    Article  CAS  Google Scholar 

  • Kentish, S., & Ashokkumar, M. (2011). The physical and chemical effects of ultrasound. In H. Feng, G. Barbosa-Canovas, & J. Weiss (Eds.), Ultrasound technologies for food and bioprocessing. Food engineering series (pp. 1–12). New York: Springer.

    Google Scholar 

  • Le Bourvellec, C., Bouchet, B., & Renard, C. M. G. C. (2005). Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides. Biochimica et Biophysica Acta (BBA)-General Subjects, 1725(1), 10–18.

    Article  Google Scholar 

  • Lecas, M., & Brillouet, J. M. (1994). Cell wall composition of grape berry skins. Phytochemistry, 35(5), 1241–1243.

    Article  CAS  Google Scholar 

  • Lieu, L. N. (2010). Application of ultrasound in grape mash treatment in juice processing. Ultrasonics Sonochemistry, 17(1), 273–279.

    Article  CAS  Google Scholar 

  • López, N., Puértolas, E., Condón, S., Álvarez, I., & Raso, J. (2008a). Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innovative Food Science & Emerging Technologies, 9(4), 477–482.

    Article  Google Scholar 

  • López, N., Puértolas, E., Condón, S., Álvarez, I., & Raso, J. (2008b). Application of pulsed electric fields for improving the maceration process during vinification of red wine: influence of grape variety. European Food Research and Technology, 227(4), 1099–1107.

    Article  Google Scholar 

  • Ma, X., Zhang, L., Wang, W., Zou, M., Ding, T., Ye, X., & Liu, D. (2016). Synergistic effect and mechanisms of combining ultrasound and pectinase on pectin hydrolysis. Food and Bioprocess Technology, 9(7), 1249–1257.

    Article  CAS  Google Scholar 

  • Mercurio, M. D., Dambergs, R. G., Cozzolino, D., Herderich, M. J., & Smith, P. A. (2010). Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations. Journal of Agricultural and Food Chemistry, 58(23), 12313–12319. https://doi.org/10.1021/jf103230b.

    Article  CAS  PubMed  Google Scholar 

  • Morata, A., Loira, I., Vejarano, R., González, C., Callejo, M. C., & Suárez-Lepe, J. A. (2017). Emerging preservation technologies in grapes for winemaking. Trends in Food Science and Technology, 67, 36–43.

    Article  CAS  Google Scholar 

  • Muñoz-Almagro, N., Montilla, A., Moreno, F. J., & Villamiel, M. (2017). Modification of citrus and apple pectin by power ultrasound: effects of acid and enzymatic treatment. Ultrasonics Sonochemistry, 38, 807–819.

    Article  Google Scholar 

  • O’donnell, C. P., Tiwari, B. K., Bourke, P., & Cullen, P. J. (2010). Effect of ultrasonic processing on food enzymes of industrial importance. Trends in Food Science & Technology, 21(7), 358–367.

    Article  Google Scholar 

  • Osete-Alcaraz, A., Bautista-Ortín, A. B., Ortega-Regules, A., & Gómez-Plaza, E. (2018). Elimination of suspended cell wall material in musts improves the phenolic content and color of red wines. American Journal of Enology and Viticulture, 70, 201–204.

    Article  Google Scholar 

  • Ough, C. S., Noble, A. C., & Temple, D. (1975). Pectic enzyme effects on red grapes. American Journal of Enology and Viticulture, 26(4), 195–200.

    CAS  Google Scholar 

  • Pastor del Rio, J. L., & Kennedy, J. A. (2006). Development of proanthocyanidins in Vitis vinifera L. cv. Pinot noir grapes and extraction into wine. American Journal of Enology and Viticulture, 57(2), 125–132.

    CAS  Google Scholar 

  • Pellerin, P., & Cabanis, J. C. (2000). Los Glúcidos. In C. Flanzy (Ed.), Enología: Fundamentos científicos y tecnológicos (pp. 66–96). Madrid: AMV Ediciones, Ediciones Mundi-Prensa.

    Google Scholar 

  • Preys, S., Mazerolles, G., Courcoux, P., Samson, A., Fischer, U., Hanafi, M., Bertrand, D., & Cheynier, V. (2006). Relationship between polyphenolic composition and some sensory properties in red wines using multiway analyses. Analytica Chimica Acta, 563(1–2), 126–136.

    Article  CAS  Google Scholar 

  • Puértolas, E., López, N., Saldaña, G., Álvarez, I., & Raso, J. (2010). Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. Journal of Food Engineering, 98(1), 120–125.

    Article  Google Scholar 

  • Romero-Cascales, I., Fernández-Fernández, J. I., Ros-García, J. M., López-Roca, J. M., & Gómez-Plaza, E. (2008). Characterization of the main enzymatic activities present in six commercial macerating enzymes and their effects on extracting colour during winemaking of Monastrell grapes. International Journal of Food Science & Technology, 43(7), 1295–1305.

    Article  CAS  Google Scholar 

  • Romero-Cascales, I., Ros-García, J. M., López-Roca, J. M., & Gómez-Plaza, E. (2012). The effect of a commercial pectolytic enzyme on grape skin cell wall degradation and colour evolution during the maceration process. Food Chemistry, 130(3), 626–631.

    Article  CAS  Google Scholar 

  • Sacchi, K. L., Bisson, L. F., & Adams, D. O. (2005). A review of the effect of winemaking techniques on phenolic extraction in red wines. American Journal of Enology and Viticulture, 56(3), 197–206.

    CAS  Google Scholar 

  • Smith, P. A. (2005). Precipitation of tannin with methyl cellulose allows tannin quantification in grape and wine samples. Technical Review. The Australian Wine Research Institute, Adelaide, Australia, 158, 3–7.

    Google Scholar 

  • Sparrow, A. M., Dambergs, R. G., Bindon, K. A., Smith, P. A., & Close, D. C. (2015). Interactions of grape skin, seed, and pulp on tannin and anthocyanin extraction in pinot noir wines. American Journal of Enology and Viticulture, 66(4), 472–481.

    Article  CAS  Google Scholar 

  • Tao, Y., Zhang, Z., & Sun, D. W. (2014). Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: influence of acoustic energy density and temperature. Ultrasonics Sonochemistry, 21(4), 1461–1469.

    Article  CAS  Google Scholar 

  • Tchabo, W., Ma, Y., Engmann, F., & Zhang, H. (2015). Ultrasound-assisted enzymatic extraction (UAEE) of phytochemical compounds from mulberry (Morus nigra) must and optimization study using response surface methodology. Industrial Crops and Products, 63, 214–225.

    Article  CAS  Google Scholar 

  • Tchabo, W., Ma, Y., Kwaw, E., Zhang, N., Li, X., & Afoakwah, N. (2017). Effects of ultrasound, high pressure, and manosonication processes on phenolic profile and antioxidant properties of a sulfur dioxide-free mulberry (Morus nigra) wine. Food and Bioprocess Technology, 10(7), 1210–1223.

    Article  CAS  Google Scholar 

  • Tiwari, B., O’ Donnell, C., Muthukumarappan, K., & Cullen, K. (2009). Effect of low temperature sonication on orange juice quality parameters using response surface methodology. Food and Bioprocess Technology, 2(1), 109–114.

    Article  CAS  Google Scholar 

  • Vidal, S., Williams, P., O’neill, M. A., & Pellerin, P. (2001). Polysaccharides from grape berry cell walls. Part I: tissue distribution and structural characterization of the pectic polysaccharides. Carbohydrate Polymers, 45(4), 315–323.

    Article  CAS  Google Scholar 

  • Vidal, S., Francis, L., Guyot, S., Marnet, N., Kwiatkowski, M., Gawel, R., Cheynier, V., & Waters, E. J. (2003). The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. Journal of the Science of Food and Agriculture, 83(6), 564–573.

    Article  CAS  Google Scholar 

  • Wightman, J. D., Price, S. F., Watson, B. T., & Wrolstad, R. E. (1997). Some effects of processing enzymes on anthocyanins and phenolics in pinot noir and Cabernet Sauvignon wines. American Journal of Enology and Viticulture, 48(1), 39–48.

    CAS  Google Scholar 

  • Yachmenev, V., Condon, B., Klasson, T., & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials and Bioenergy, 3(1), 25–31.

    Article  CAS  Google Scholar 

  • Zhang, L., Ye, X., Ding, T., Sun, X., Xu, Y., & Liu, D. (2013). Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sonochemistry, 20(1), 222–231.

    Article  CAS  Google Scholar 

  • Zhang, Q. A., Shen, Y., Fan, X. H., & García-Martín, J. F. (2016). Preliminary study of the effect of ultrasound on physicochemical properties of red wine. CyTA-Journal of Food, 14(1), 55–64.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministerio de Economía y Competitividad from the Spanish Government (Project AGL2015-65974-R) and FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Encarna Gómez-Plaza.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osete-Alcaraz, A., Bautista-Ortín, A.B., Ortega-Regules, A.E. et al. Combined Use of Pectolytic Enzymes and Ultrasounds for Improving the Extraction of Phenolic Compounds During Vinification. Food Bioprocess Technol 12, 1330–1339 (2019). https://doi.org/10.1007/s11947-019-02303-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02303-0

Keywords

Navigation