Skip to main content
Log in

High-Intensity Ultrasound Processing of Pineapple Juice

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The influence of ultrasound processing on the physicochemical characteristics of pineapple juice was investigated through an experimental design changing ultrasound time and intensity. After processing, the polyphenoloxidase (PPO) activity in the pineapple juice was reduced by 20% as result of the treatment with longer exposure and higher intensity (376 W/cm2 and 10 min). The effect on phenolic compounds compared to the fresh pineapple juice (non-sonicated) was not statistically significant. Ultrasound processing reduced juice viscosity by 75% of the initial value (non-sonicated juice). The higher the ultrasound intensity and the juice exposure (processing time), the higher the final temperature of the juice, reaching a maximum of 54 °C. Ultrasound processing enhanced the juice color and its stabilization along 42 days of storage compared to the non-sonicated juice. Thermal treatment at the highest temperature reached due to juice sonication (54 °C) showed no effect on PPO inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., & Versterrg, C. K. (2008). Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9, 155–160.

    Article  CAS  Google Scholar 

  • Bates, D. M., Bagnall, W. A., & Bridges, M. W. (2006). Method of treatment of vegetable matter with ultrasonic energy. US patent application 20060110503.

  • Botelho, L., Conceição, A., & Carvalho, V. D. (2002). Caracterização de fibras alimentares da casca e cilindro central do abacaxi ‘Smooth Cayenne’. Ciência agrotecnologia, 26, 362–367.

    Google Scholar 

  • Bradford, M. M. A. (1976). Rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Chemistry, 72, 248–254.

    CAS  Google Scholar 

  • Caminiti, I. M., Noci, F., Muñoz, A., Whyte, P., Morgan, D. J., Cronin, D. J., & Lyng, D. J. (2011). Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chemistry, 124, 1387–1392.

    Article  CAS  Google Scholar 

  • Char, C. D., Mitilinaki, E., Guerrero, S. N., & Alzamora, S. M. (2010). Use of high-intensity ultrasound and UV-C light to inactivate some microorganisms in fruit juices. Food and Bioprocess Technology, 3, 797–803.

    Article  Google Scholar 

  • Chemat, F., Huma, Z., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18, 813–835.

    Article  CAS  Google Scholar 

  • Cheng, L. H., Soh, C. Y., Liew, S. C., & Teh, F. F. (2007). Effects of sonication and carbonation on guava juice quality. Food Chemistry, 104, 1396–1401.

    Article  CAS  Google Scholar 

  • Chutintrasri, B., & Noomhorm, A. (2006). Thermal inactivation of polyphenoloxidase in pineapple puree. LWT- Food Science and Technology, 39, 492–495.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., Oliveira, F. I. P., & Rodrigues, S. (2008). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1, 339–345.

    Article  Google Scholar 

  • Fonteles, T. V., de Costa, M. G., Jesus, A. L. T., & Rodrigues, S. (2011). Optimization of the fermentation of cantaloupe juice by Lactobacillus casei NRRL B-442. Food and Bioprocess Technology. doi:10.1007/s11947-011-0600-0.

  • Ghafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57, 4988–4994.

    Article  CAS  Google Scholar 

  • Gómez-López, V. M., Orsolani, L., Martínez-Yépez, A., & Tapia, M. S. (2010). Microbiological and sensory quality of sonicated calcium-added orange juice. LWT- Food Science and Technology, 43, 808–813.

    Article  Google Scholar 

  • Kim, S. M., & Zayas, J. F. (1989). Processing parameter of chymosin extraction by ultrasound. Journal of Food Science, 54, 700–703.

    Article  CAS  Google Scholar 

  • Kuldiloke, J. (2002). Effect of ultrasound, temperature and pressure treatments on enzyme activity and quality indicators of fruit and vegetable juices. Doctoral dissertation, Technical University of Berlin, Berlin.

  • Larrauri, J. A., Rupérez, P., & Saura-calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, 45, 1390–1393.

    Article  CAS  Google Scholar 

  • Li, H., Pordesimo, L., & Weiss, J. (2004). High intensity ultrasound assisted extraction of oil from soybeans. Food Research International, 37, 731–738.

    Article  CAS  Google Scholar 

  • Lieu, L. N., & Le, V. V. M. (2010). Application of ultrasound in grape mash treatment in juice processing. Ultrasonics Sonochemistry, 17, 273–279.

    Article  CAS  Google Scholar 

  • Liu, Y., Jin, Q., Shan, L., Liu, Y., Shen, W., & Wang, X. (2008). The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrasonics Sonochemistry, 15, 402–407.

    Article  CAS  Google Scholar 

  • López, P., Sala, F. J., de la Fuente, J. L., Condon, S., Raso, J., & Burgos, J. (1994). Inactivation of peroxidase, lipoxygenase and polyphenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42, 252–256.

    Article  Google Scholar 

  • López, P., Vercet, A., Sánchez, A. C., & Burgos, J. (1998). Inactivation of tomato pectic enzymes by manothermosonication. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 207, 249–252.

    Article  Google Scholar 

  • Martinez, M. V., & Whitaker, J. R. (1995). The biochemistry and control of enzymatic browning. Trends in Food Science and Technology, 6, 195–200.

    Article  CAS  Google Scholar 

  • Mason, T. J., Lorimer, J. P., Baters, D. M., & Zhao, Y. (1994). Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrasonics Sonochemistry, 1, 91–95.

    Article  Google Scholar 

  • Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3, 253–260.

    Article  Google Scholar 

  • Minolta. (1998). Precise color communication—color control from perception to instrumentation (p. 59). Osaka: Minolta.

    Google Scholar 

  • Obanda, M., Owuor, P. O., & Taylor, S. J. (1997). Flavonol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. Journal of the Science of Food and Agriculture, 74, 209–215.

    Article  CAS  Google Scholar 

  • O’Donnell, C. P., Tiwari, B. K., Bourke, P., & Cullen, P. J. (2010). Effect of ultrasonic processing on food enzymes of industrial importance. Trends in Food Science and Technology, 21, 358–367.

    Article  Google Scholar 

  • Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2011). Dehydration of Malay apple (Syzygium malaccense L) using ultrasound as pre-treatment. Food and Bioprocess Technology, 4, 610–615.

    Article  Google Scholar 

  • Sakakibara, M., Wang, D., Takahashi, R., Takahashi, K., & Mori, S. (1996). Influence of ultrasound irradiation on hydrolysis of sucrose catalyzed by invertase. Enzyme and Microbial Technology, 18, 444–448.

    Article  CAS  Google Scholar 

  • Seshadri, R., Weiss, J., Hulbert, G. J., & Mount, J. (2003). Ultrasonic processing influences rheological and optical properties of high methoxyl pectin dispersions. Food Hydrocolloids, 17, 191–197.

    Article  CAS  Google Scholar 

  • Sun, D. W. (2005). Emerging technologies for food processing. London: Elsevier.

    Google Scholar 

  • Suslick, K. S. (1988). Ultrasounds: Its chemical physical and biological effects. New York: VHC.

    Google Scholar 

  • Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2008). Colour degradation and quality parameters of sonicated orange juice using response surface methodology. LWT- Food Science and Technology, 41, 1878–1883.

    Article  Google Scholar 

  • Tiwari, B. K., O’Donnel, C. P. O., Patras, A., & Cullen, P. J. (2008). Anthocyanin and ascorbic acid degradation in sonicated strawberry juice. Journal of Agriculture Food Chemistry, 56, 10071–10077.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., O’Donnell, C. P., Muthukumarappan, K., & Cullen, P. J. (2009). Effect of low temperature sonication on orange juice quality parameters using response surface methodology. Food and Bioprocess Technology, 2, 109–114.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2009). Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innovative Food Science and Emerging Technologies, 10, 166–171.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., Patras, A., Brunton, N., Cullen, P. J., & O’Donnell, C. P. (2010). Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics Sonochemistry, 17, 598–604.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2010). Rheological properties of sonicated guar, xanthan and pectin dispersions. International Journal of Food Properties, 13, 223–233.

    Article  CAS  Google Scholar 

  • Valdramidis, V. P., Cullen, P. J., Tiwari, B. K., & O’Donnell, C. P. (2010). Quantitative modeling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. Journal of Food Engineering, 96, 449–454.

    Article  CAS  Google Scholar 

  • Valero, M., Recrosio, N., Saura, D., Muñoz, N., Martí, N., & Lizama, V. (2007). Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80, 509–516.

    Article  Google Scholar 

  • Vercet, A., Lopez, P., & Burgos, J. (1999). Inactivation of heat-resistant pectin methylesterase from orange by manothermosonication. Journal of Agriculture and Food Chemistry, 47, 432–437.

    Article  CAS  Google Scholar 

  • Vercet, A., Burgos, J., & Lopez-Buesa, P. (2001). Manothermosonication of foods and food-resembling systems: effect on nutrient content and nonenzymatic browning. Journal of Agriculture and Food Chemistry, 49, 483–489.

    Article  CAS  Google Scholar 

  • Vercet, A., Oria, R., Marquina, P., Crelier, S., & Lopez-Buesa, P. (2002). Rheological properties of yoghurt made with milk submitted to manothermosonication. Journal of Agricultural and Food Chemistry, 50, 6165–6171.

    Article  CAS  Google Scholar 

  • Wambura, P., Tegete, H., & Verghese, M. (2010). Application of high-power ultrasound to improve adhesion of honey on roasted peanuts to improve oxidative stability. Food and Bioprocess Technology. doi:10.1007/s11947-010-0467-5.

  • Wissemann, K. W., & Lee, C. Y. (1980). Polyphenoloxidase activity during grape maturation and wine production. American Journal of Enology and Viticulture, 31, 206–211.

    CAS  Google Scholar 

  • Wong, E., Vaillant, F., & Pérez, A. (2010). Osmosonication of blackberry juice: impact on selected pathogens, spoilage microorganisms, and main quality parameters. Journal of Food Science, 75, 468–474.

    Article  Google Scholar 

  • Wu, J., Gamage, T. V., Vilkhu, K. S., Simons, L. K., & Mawson, R. (2008). Effect of thermosonication on quality improvement of tomato juice. Innovative Food Science and Emerging Technologies, 9, 186–195.

    Article  CAS  Google Scholar 

  • Zenker, M., Heinz, V., & Knorr, D. (2003). Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. Journal of Food Protection, 66, 1642–1649.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq for financial support through the National Institute of Science and Technology of Tropical Fruit and CAPES for scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sueli Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, M.G.M., Fonteles, T.V., de Jesus, A.L.T. et al. High-Intensity Ultrasound Processing of Pineapple Juice. Food Bioprocess Technol 6, 997–1006 (2013). https://doi.org/10.1007/s11947-011-0746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0746-9

Keywords

Navigation