Skip to main content
Log in

Optimization of anthocyanin extraction from Oxalis tuberosa peel by ultrasound, enzymatic treatment and their combination

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Oca Oxalis tuberosa is an Andean tuber with an important concentration of polyphenols and anthocyanins in the peel and flesh of the tuber. To exploit health and antioxidant benefits from these compounds they need to be extracted from the plant. Nowadays ultrasound and enzymatic extractions have demonstrated that they can enhance biocompound recovery over short periods of time and minimal solvent use. Therefore, the aim in this investigation is optimize pH, temperature and time for ultrasound, enzymatic extraction and their combination of anthocyanins from O. tuberosa peel. This peel is rich in carbohydrates (68.29 ± 0.37%), while starch and hemicellulose are the main constituents in the cell wall. The enzyme-ultrasound combination method showed the best results for obtaining anthocyanins using the following conditions: a 5-value of pH solvent, 30 °C temperature and 30 min of time. The concentration of monomeric anthocyanins reaches up to 583.50 ± 1.87 mg Cyn-3-glu g− 1, while antioxidant activity using DPPH increases from 806.32 ± 8.33 to 823.08 ± 1.98 mg. ET g− 1 for the extract. When ABTS radical was used the activity increased from 618.83 ± 1.45 to 657.40 ± 1.76 mg. ET g− 1 and in FRAP increased from 334.30 to 360.89 µmol Eq. Trolox g− 1. Extracts with a high content of polyphenol and anthocyanin can be used in the food and pharmaceutical industries to prevent degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. N. Güemes-Vera, S.O. Espino-Manzano, H.M. Hernández-Hernández, In Alternative and Replacement Foods, ed. A.M. Holban, A.M. Grumezescu, (Academic Press, 2018), 167–175

  2. C. Alcalde-Eon, G. Saavedra, S. de Pascual-Teresa, J.C. Rivas-Gonzalo, J. Chromatogr A. (2004)

  3. R. Chirinos, I. Betalleluz-Pallardel, A. Huamán, C. Arbizu, R. Pedreschi, D. Campos, Food Chem., (2008), https://doi.org/10.1016/j.foodchem.2008.08.015

    Article  Google Scholar 

  4. W. Yang, Y. Guo, M. Liu, X. Chen, X. Xiao, S. Wang, P. Gong, Y. Ma, F. Chen, J. Funct. Foods, (2022) https://doi.org/10.1016/j.jff.2021.104864

    Article  Google Scholar 

  5. F.M.D. Nora, C.D. Borges, Cienc. Rural, (2017), https://doi.org/10.1590/0103-8478cr20170173

    Article  Google Scholar 

  6. C. Soto-Maldonado, M.E. Zúñiga-Hansen, in Water Extraction of Bioactive Compounds, ed. by H. Dominguez-González, M.J. González-Muñoz (Elsevier, 2017), pp. 369–384

  7. A.B. Das, V.V. Goud, C. Das, Ind. Crops Prod., (2017)., https://doi.org/10.1016/j.indcrop.2016.10.041

    Article  Google Scholar 

  8. P. Pérez-Porras, A.B. Bautista-Ortín, R. Jurado, E. Gómez-Plaza, LWT-Food Sci. Technol., (2022), https://doi.org/10.1016/j.lwt.2021.113032

    Article  Google Scholar 

  9. H. Xue, J. Tan, Q. Li, J. Tang, X. Cai. Food Anal. Methods, (2021) https://doi.org/10.1007/s12161-021-01976-8

    Article  Google Scholar 

  10. J. Tan, Q. Li, H. Xue, J. Tang, J. Food Sci. (2020), https://doi.org/10.1111/1750-3841.15497

    Article  PubMed  Google Scholar 

  11. H. Shahram, S.T. Dinai, M. Amouheydari. J. Food Meas. Charact. (2018), https://doi.org/10.1007/s11694-018-9962-6

    Article  Google Scholar 

  12. S. Oancea, M. Perju, H. Olosutean. J. Serb Chem. Soc. (2020), https://doi.org/10.2298/JSC190807120O

    Article  Google Scholar 

  13. AOAC, Official Methods of Analysis of AOAC International, 17th edn. (AOAC, International, Washington DC, 2002)

    Google Scholar 

  14. P.J. Van Soest, J. AOAC Int. (1963), https://doi.org/10.1093/jaoac/46.5.829

    Article  Google Scholar 

  15. AOAC, Official Methods of Analysis of AOAC International, 16th edn. (AOAC, International, Gaithersburg, 1999)

    Google Scholar 

  16. S. Li, Y. Yang, J. Li, Z. Zhu, J.M. Lorenzo, F.J. Barba, Molecules (2018) https://doi.org/10.3390/molecules23092089

  17. Y. Jiang, Y. Ding, D. Wang, Y. Deng, Y. Zhao, Ind. Crops Prod., (2020) https://doi.org/10.1016/j.indcrop.2020.112327

    Article  Google Scholar 

  18. M.R. Meini, I. Cabezudo, C.E. Boschetti, D. Romanini, Food Chem., (2019) https://doi.org/10.1016/j.foodchem.2019.01.037

    Article  PubMed  Google Scholar 

  19. V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic 16, 144–158 (1965)

    CAS  Google Scholar 

  20. L. González-Victoriano, N. Güemes-Vera, L.A. Chel-Guerrero, A. Bernardino-Nicanor, S. Soto-Simental, J.J. Chanona-Pérez, A. Quintero-Lira, C.Y.T.A.J. Food (2019), https://doi.org/10.1080/19476337.2018.1554703

  21. J. Lee, R.W. Durst, R.E. Wrolstad, J. AOAC Int. (2005), https://doi.org/10.1093/jaoac/88.5.1269

    Article  PubMed  Google Scholar 

  22. W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT-Food Sci. Technol. (1995), https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  23. M.I. Medina-Galván, A. Bernardino-Nicanor, J. Castro-Rosas, M.D.L.L.X. Negrete, E. Conde-Barajas, L. González-Cruz, Res. J. Biotech, 13(12), (2018)

  24. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, M.C. Rice-Evans, Free Radic. Biol. Med., (1999), https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  PubMed  Google Scholar 

  25. A. Bunea, D. Rugină, Z. Sconţa, Phytochem, (2013), https://doi.org/10.1016/j.phytochem.2013.06.018

  26. F. Xiao, T. Xu, R. Liu, Food Front., (2020), https://doi.org/10.1002/fft2.10

    Article  PubMed  PubMed Central  Google Scholar 

  27. L. Núñez-Bretón, L. Cruz-Rodríguez, M. Tzompole-Colohua, J. Jiménez-Guzmán, M.J. Perea-Flores, W. Rosas-Flores, F. Gónzalez-Jimenez, J. Food Meas. Charact., (2019), https://doi.org/10.1007/s11694-019-00207-3

    Article  Google Scholar 

  28. Z. Barati, S. Latif, J. Müller, Biocatal. Agric. Biotechnol. (2019), https://doi.org/10.1016/j.bcab.2019.101247

    Article  Google Scholar 

  29. A. Li, R. Xiao, S. He, X. An, Y. He, C. Wang, S. Yin, B. Wang, X. Shi, J. He Molecules (2019) https://doi.org/10.3390/molecules24213816

    Article  Google Scholar 

  30. K. Kumar, S. Srivastav, V.S. Sharanagat, Ultrason. Sonochem, (2021), https://doi.org/10.1016/j.ultsonch.2020.105325

    Article  PubMed  PubMed Central  Google Scholar 

  31. S. Saha, A.K. Singh, A.K. Keshari, V. Raj, A. Rai, S. Maithy, in Ingredients Extraction by Physicochemical Methods in Food, ed. by A.M. By, A.M. Grumezescu (Holban (Academic Press, 2017)

  32. S.J. Marathe, S.B. Jadhav, S.B. Bankar, K.K. Dubey, R.S. Singhal, Food Sci. (2019), https://doi.org/10.1016/j.cofs.2019.02.009

    Article  Google Scholar 

  33. M.J. Aliaño-González, C. Carrera, G.F. Barbero, M. Palma, Food Chem. X, (2022), https://doi.org/10.1016/j.fochx.2021.100192

    Article  Google Scholar 

  34. A.Q. Syafa’atullah, A. Amira, S. Hidayati, S.M. Mahfud, AIP Conf. Proc., (2020) https://doi.org/10.1063/5.0005289

  35. S. Wahyuningsih, L. Wulandari, M.W. Warton, H. Munawaroh, A.H. Ramelan, IOP Conf. Ser. : Mater. Sci. Eng. 193, 012047 (2017)

    Article  Google Scholar 

  36. X.Q. Chen, Z.H. Li, Z.J. Wang, L.L. Liu, T.T. Sun, J.Z. Ma, Y. Zhang, Ind. Crops Prod., (2020), https://doi.org/10.1016/j.indcrop.2020.112420

    Article  Google Scholar 

  37. Y. Li, F. Tao, Y. Wang, K. Cui, J. Cao, C. Cui, L. Nan, J. Yang, Z. Wang, IOP Conf. Ser.: Earth Environ. Sci. 559 012011, (2020)

  38. D.G. Bortolini, G.M. Maciel, I.D.A. Fernandes, R. Rossetto, T. Brugnari, V.R. Ribeiro, C.W.I. Haminiuk, Food Chem. Adv., (2022), https://doi.org/10.1016/j.focha.2022.100014

    Article  Google Scholar 

  39. H. Xue, J. Tan, Q. Li, J. Tang, X. Cai, Molecules, (2020), https://doi.org/10.3390/molecules25225456

  40. L. Zhang, G. Fan, M.A. Khan, Z. Yan, T. Beta. Food Chem, (2020) https://doi.org/10.1016/j.foodchem.2020.126714

    Article  PubMed  Google Scholar 

  41. F. Fernandez-Aulis, L. Hernández-Vázquez, G. Aguilar-Osorio, D. Arrieta-Baez, A. Navarro-Ocana. J. Food Sci: Food Chem., (2019), https://doi.org/10.1111/1750-3841.14589

    Article  Google Scholar 

  42. B. Khadhraoui, V. Ummat, B.K. Tiwari, A.S. Fabiano-Tixier, F. Chemat, Ultrason. Sonochem, (2021), https://doi.org/10.1016/j.ultsonch.2021.105625

    Article  PubMed  PubMed Central  Google Scholar 

  43. D. Wu, T. Gao, H. Yang, Y. Du, C. Li, L. Wei, T. Zhou, J. Lu, H. Bi, Ind. Crops Prod., (2015), https://doi.org/10.1016/j.indcrop.2014.12.054

    Article  Google Scholar 

  44. S.L. Sampaio, J. Lonchamp, M.I. Dias, C. Liddle, S.A. Petropoulos, J. Glamočlija, L. Barros, Food Chem., (2021) https://doi.org/10.1016/j.foodchem.2020.128526

    Article  PubMed  Google Scholar 

  45. M.A. Valiñas, M.L. Lanteri, A. Have, A.B. Andreu, Food Chem., (2017), https://doi.org/10.1016/j.foodchem.2017.02.150

    Article  PubMed  Google Scholar 

  46. K. Vivek, S. Mishra, R.C. Pradhan, J. Food Process. Eng., (2019) https://doi.org/10.1111/jfpe.12948

    Article  Google Scholar 

  47. U. Szymanowska, B. Baraniak, Antioxidants, (2019), https://doi.org/10.3390/antiox8080299

  48. I.F. Olawuyi, S.A. Akbarovich, C.K. Kim, W.Y. Lee, J. Food Process. Preserv. (2020), https://doi.org/10.1111/jfpp.15074

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the National Council of Science and Technology (CONACYT) for providing financial support number: 781667.

Funding

D. Dimas-López received a grant from the National Council of Science and Technology (CONACYT), number 781667. The funders had no role in the study design, data collection, analyses or interpretation, the writing of the manuscript or in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Contributions

Denis de Jesús Dimas-López: Performed all the experiments, data recovery, formal analysis and investigation, wrote the original draft, Sergio Soto-Simental: Provided resources, data recovery and statistical analysis, investigation, review and editing, supervision, Norma, Güemes-Vera: Conceptualization, methodology, provided resources, Deyanira Ojeda-Ramírez: Provided resources, experimental design, data analysis, Aurora Quintero-Lira: review, Javier Piloni-Martini: Provided resources, investigation, original draft preparation, review, editing and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Piloni-Martini Javier.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesús, DL.D., Sergio, SS., Norma, GV. et al. Optimization of anthocyanin extraction from Oxalis tuberosa peel by ultrasound, enzymatic treatment and their combination. Food Measure 17, 1775–1782 (2023). https://doi.org/10.1007/s11694-022-01721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01721-7

Keywords

Navigation