Skip to main content

Advertisement

Log in

Enhanced Recovery After Surgery (ERAS) in Surgical Oncology

  • Anesthesiology and Critical Care (JP Cata, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

The objective of this review is to address the rationale behind the application of the Enhanced Recovery After Surgery (ERAS) protocols that could improve oncologic outcomes in adult patients undergoing major surgery.

Recent Findings

The implementation of ERAS protocols has been associated with fewer postoperative complications as well as decreased return to intended oncologic treatment (RIOT). However, few studies have analyzed the influence of the application of ERAS protocols and long-term oncologic outcomes, although some of its individual elements have been associated with improvements in oncologic outcomes, including overall survival and disease-free survival.

Summary

Targeted long-term follow-up studies in specific oncologic procedures are required to determine whether ERAS application results in improved oncologic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kehlet H. Enhanced Recovery After Surgery (ERAS): good for now, but what about the future? Can J Anaesth. 2015;62:99–104.

    Article  PubMed  Google Scholar 

  2. Kehlet H, Mogensen T. Hospital stay of 2 days after open sigmoidectomy with a multimodal rehabilitation programme. Br J Surg. 1999;86:227–30.

    Article  CAS  PubMed  Google Scholar 

  3. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg. 2017;152:292–8.

    Article  PubMed  Google Scholar 

  4. Singh SM, Liverpool A, Romeiser JL, Thacker J, Gan TJ, Bennett-Guerrero E. Types of surgical patients enrolled in enhanced recovery after surgery (ERAS) programs in the USA. Perioper Med (London, England). 2021;10:12.

    Article  Google Scholar 

  5. •• Lee Y, Yu J, Doumouras AG, Li J, Hong D. Enhanced recovery after surgery (ERAS) versus standard recovery for elective gastric cancer surgery: a meta-analysis of randomized controlled trials. Surg Oncol. 2020;32:75–87. This meta-analysis, which included 14 studies, showed that the application of ERAS in gastric cancer can reduce length of stay, costs and time to return to function after gastric cancer surgery compared to conventional recovery. However, ERAS may increase the number of postoperative readmissions, although with no impact on the rate of postoperative complications, and there was no analysis of oncologic outcomes.

    Article  PubMed  Google Scholar 

  6. Bisch SP, Jago CA, Kalogera E, Ganshorn H, Meyer LA, Ramirez PT, et al. Outcomes of enhanced recovery after surgery (ERAS) in gynecologic oncology - a systematic review and meta-analysis. Gynecol Oncol. 2021;161:46–55.

    Article  CAS  PubMed  Google Scholar 

  7. Ni X, Jia D, Chen Y, Wang L, Suo J. Is the Enhanced Recovery After Surgery (ERAS) program effective and safe in laparoscopic colorectal cancer surgery? A Meta-analysis of randomized controlled trials. J Gastrointest Surg. 2019;23:1502–12.

    Article  PubMed  Google Scholar 

  8. Oh C, Moriarty J, Borah BJ, Mara KC, Harmsen WS, Saint-Cyr M, et al. Cost analysis of enhanced recovery after surgery in microvascular breast reconstruction. J Plast Reconstr Aesthet Surg. 2018;71:819–26.

    Article  PubMed  Google Scholar 

  9. Tejedor P, Pastor C, Gonzalez-Ayora S, Ortega-Lopez M, Guadalajara H, Garcia-Olmo D. Short-term outcomes and benefits of ERAS program in elderly patients undergoing colorectal surgery: a case-matched study compared to conventional care. Int J Colorectal Dis. 2018;33:1251–8.

    Article  PubMed  Google Scholar 

  10. Miralpeix E, Nick AM, Meyer LA, Cata J, Lasala J, Mena GE, et al. A call for new standard of care in perioperative gynecologic oncology practice: impact of enhanced recovery after surgery (ERAS) programs. Gynecol Oncol. 2016;141:371–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hiller JG, Perry NJ, Poulogiannis G, Riedel B, Sloan EK. Perioperative events influence cancer recurrence risk after surgery. Nat Rev Clin Oncol. 2018;15:205–18.

    Article  PubMed  Google Scholar 

  12. Margraf A, Ludwig N, Zarbock A, Rossaint J. Systemic inflammatory response syndrome after surgery: mechanisms and protection. Anesth Analg. 2020;131:1693–707.

    Article  PubMed  Google Scholar 

  13. Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A, Mortara L. Natural killer cells as key players of tumor progression and angiogenesis: old and novel tools to divert their pro-tumor activities into potent anti-tumor effects. Cancers (Basel). 2019;11(4):461.

  14. Thomas M. Advances in oncoanaesthesia and cancer pain. Cancer Treat Res Commun. 2021;29:100491.

    Article  PubMed  Google Scholar 

  15. Pędziwiatr M, Mavrikis J, Witowski J, Adamos A, Major P, Nowakowski M, et al. Current status of enhanced recovery after surgery (ERAS) protocol in gastrointestinal surgery. Med Oncol. 2018;35:95.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Manso M, Schmelz J, Aloia T. ERAS-Anticipated outcomes and realistic goals. J Surg Oncol. 2017;116:570–7.

    Article  PubMed  Google Scholar 

  17. Biagi JJ, Raphael MJ, Mackillop WJ, Kong W, King WD, Booth CM. Association between time to initiation of adjuvant chemotherapy and survival in colorectal cancer: a systematic review and meta-analysis. JAMA. 2011;305:2335–42.

    Article  CAS  PubMed  Google Scholar 

  18. Hofstetter G, Concin N, Braicu I, Chekerov R, Sehouli J, Cadron I, et al. The time interval from surgery to start of chemotherapy significantly impacts prognosis in patients with advanced serous ovarian carcinoma - analysis of patient data in the prospective OVCAD study. Gynecol Oncol. 2013;131:15–20.

    Article  CAS  PubMed  Google Scholar 

  19. Kim BJ, Caudle AS, Gottumukkala V, Aloia TA. The impact of postoperative complications on a timely return to intended oncologic therapy (RIOT): the role of enhanced recovery in the cancer journey. Int Anesthesiol Clin. 2016;54:e33-46.

    Article  PubMed  Google Scholar 

  20. Tankou JI, Foley O, Falzone M, Kalyanaraman R, Elias KM. Enhanced recovery after surgery protocols improve time to return to intended oncology treatment following interval cytoreductive surgery for advanced gynecologic cancers. Int J Gynecol Cancer. 2021;31:1145–53.

    Article  PubMed  Google Scholar 

  21. Nelson DB, Mehran RJ, Mitchell KG, Correa AM, Sepesi B, Antonoff MB, et al. Enhanced recovery after thoracic surgery is associated with improved adjuvant chemotherapy completion for non-small cell lung cancer. J Thorac Cardiovasc Surg. 2019;158:279-286.e1.

    Article  PubMed  Google Scholar 

  22. Slim K, Theissen A. Enhanced recovery after elective surgery. A revolution that reduces post-operative morbidity and mortality. J Visc Surg. 2020;157:487–91.

    Article  CAS  PubMed  Google Scholar 

  23. Hayden JM, Oras J, Block L, Thörn S-E, Palmqvist C, Salehi S, et al. Intraperitoneal ropivacaine reduces time interval to initiation of chemotherapy after surgery for advanced ovarian cancer: randomised controlled double-blind pilot study. Br J Anaesth. 2020;124:562–70.

    Article  CAS  PubMed  Google Scholar 

  24. • Ripollés-Melchor J, Ramírez-Rodríguez JM, Casans-Francés R, Aldecoa C, Abad-Motos A, Logroño-Egea M, et al. Association between use of enhanced recovery after surgery protocol and postoperative complications in colorectal surgery: the postoperative outcomes within enhanced recovery after surgery protocol (POWER) Study. JAMA Surg. 2019;154:725–36. This study included more than 2000 patients and showed that having a protocol alone does not improve short-term results, but is directly dependent on adherence to ERAS protocols.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ripollés-Melchor J, Abad-Motos A, Díez-Remesal Y, Aseguinolaza-Pagola M, Padin-Barreiro L, Sánchez-Martín R, et al. Association between use of enhanced recovery after surgery protocol and postoperative complications in total hip and knee arthroplasty in the postoperative outcomes within enhanced recovery after surgery protocol in elective total hip and knee arthroplast. JAMA Surg. 2020;12:e196024–e196024.

    Article  Google Scholar 

  26. Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg. 2005;242:323–6.

    Article  Google Scholar 

  27. Tjeertes EKM, Ultee KHJ, Stolker RJ, Verhagen HJM, Bastos Gonçalves FM, Hoofwijk AGM, et al. Perioperative complications are associated with adverse long-term prognosis and affect the cause of death after general surgery. World J Surg [Internet]. 2016;40:2581–90.

    Article  Google Scholar 

  28. Tevis SE, Kohlnhofer BM, Stringfield S, Foley EF, Harms BA, Heise CP, et al. Postoperative complications in patients with rectal cancer are associated with delays in chemotherapy that lead to worse disease-free and overall survival. Dis Colon Rectum. 2013;56:1339–48.

    Article  PubMed  Google Scholar 

  29. Chau I, Norman AR, Cunningham D, Tait D, Ross PJ, Iveson T, et al. A randomised comparison between 6 months of bolus fluorouracil/leucovorin and 12 weeks of protracted venous infusion fluorouracil as adjuvant treatment in colorectal cancer. Ann Oncol Off J Eur Soc Med Oncol. 2005;16:549–57.

    Article  CAS  Google Scholar 

  30. Aoyama T, Oba K, Honda M, Sadahiro S, Hamada C, Mayanagi S, et al. Impact of postoperative complications on the colorectal cancer survival and recurrence: analyses of pooled individual patients’ data from three large phase III randomized trials. Cancer Med. 2017;6:1573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Waldenstedt S, Bock D, Haglind E, Sjöberg B, Angenete E. Intraoperative adverse events as a risk factor for local recurrence of rectal cancer after resection surgery. Colorectal Dis. 2021. https://doi.org/10.1111/codi.16036. Epub ahead of print.

  32. Scott MJ, Baldini G, Fearon KCH, Feldheiser A, Feldman LS, Gan TJ, et al. Enhanced Recovery after Surgery (ERAS) for gastrointestinal surgery, part 1: Pathophysiological considerations. Acta Anaesthesiol Scand. 2015;59:1212–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mari G, Crippa J, Costanzi A, Mazzola M, Rossi M, Maggioni D. ERAS Protocol reduces IL-6 secretion in colorectal laparoscopic surgery: results from a randomized clinical trial. Surg Laparosc Endosc Percutan Tech. 2016;26:444–8.

    Article  PubMed  Google Scholar 

  34. Coffey JC, Wang JH, Smith MJF, Bouchier-Hayes D, Cotter TG, Redmond HP. Excisional surgery for cancer cure: therapy at a cost. Lancet Oncol. 2003;4:760–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sammour T, Kahokehr A, Chan S, Booth RJ, Hill AG. The humoral response after laparoscopic versus open colorectal surgery: a meta-analysis. J Surg Res. 2010;164:28–37.

    Article  PubMed  Google Scholar 

  36. Camus Y, Delva E, Cohen S, Lienhart A. The effects of warming intravenous fluids on intraoperative hypothermia and postoperative shivering during prolonged abdominal surgery. Acta Anaesthesiol Scand. 1996;40:779–82.

    Article  CAS  PubMed  Google Scholar 

  37. Greisen J, Juhl CB, Grøfte T, Vilstrup H, Jensen TS, Schmitz O. Acute pain induces insulin resistance in humans. Anesthesiology. 2001;95:578–84.

    Article  CAS  PubMed  Google Scholar 

  38. Ljungqvist O. Modulating postoperative insulin resistance by preoperative carbohydrate loading. Best Pract Res Clin Anaesthesiol. 2009;23:401–9.

    Article  CAS  PubMed  Google Scholar 

  39. Yang D, He W, Zhang S, Chen H, Zhang C, He Y. Fast-track surgery improves postoperative clinical recovery and immunity after elective surgery for colorectal carcinoma: randomized controlled clinical trial. World J Surg. 2012;36:1874–80.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gustafsson UO, Oppelstrup H, Thorell A, Nygren J, Ljungqvist O. Adherence to the ERAS protocol is associated with 5-year survival after colorectal cancer surgery: a retrospective cohort study. World J Surg. 2016;40:1741–7.

    Article  PubMed  Google Scholar 

  41. •• Pisarska M, Torbicz G, Gajewska N, Rubinkiewicz M, Wierdak M, Major P, et al. Compliance with the ERAS protocol and 3-year survival after laparoscopic surgery for non-metastatic colorectal cancer. World J Surg. 2019;43:2552–60. This study demonstrated an association between ERAS protocol adherence and long-term survival after laparoscopic colorectal surgery for nonmetastatic cancer. Lower protocol adherence, regardless of cancer stage and postoperative complications, was an independent risk factor for worsened survival rates.

    Article  PubMed  Google Scholar 

  42. St-Amour P, St-Amour P, Joliat G-R, Eckert A, Labgaa I, Roulin D, et al. Impact of ERAS compliance on the delay between surgery and adjuvant chemotherapy in hepatobiliary and pancreatic malignancies. Langenbeck’s Arch Surg. 2020;405:959–66.

    Article  Google Scholar 

  43. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery a review. JAMA Surg. 2017;152:292–8.

    Article  PubMed  Google Scholar 

  44. Jayne DG, Guillou PJ, Thorpe H, Quirke P, Copeland J, Smith AMH, et al. Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC Trial Group. J Clin Oncol. 2007;25:3061–8.

    Article  PubMed  Google Scholar 

  45. Kuhry E, Schwenk WF, Gaupset R, Romild U, Bonjer HJ. Long-term results of laparoscopic colorectal cancer resection. Cochrane database Syst Rev. 2008;2008:CD003432.

    PubMed Central  Google Scholar 

  46. Falcetta FS, Lawrie TA, Medeiros LR, da Rosa MI, Edelweiss MI, Stein AT, et al. Laparoscopy versus laparotomy for FIGO stage I ovarian cancer. Cochrane database Syst Rev. 2016;10:CD005344.

    PubMed  Google Scholar 

  47. Bonjer HJ, Deijen CL, Abis GA, Cuesta MA, van der Pas MHGM, de Lange-de Klerk ESM, et al. A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med. 2015;372:1324–32.

    Article  CAS  PubMed  Google Scholar 

  48. Gustafsson UO, Scott MJ, Hubner M, Nygren J, Demartines N, Francis N, et al. Guidelines for perioperative care in elective colorectal surgery: Enhanced Recovery After Surgery (ERAS(®)) Society Recommendations: 2018. World J Surg. 2019;43:659–95.

    Article  CAS  PubMed  Google Scholar 

  49. Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutr J. 2010;9:69.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Carli F, Baldini G. From preoperative assessment to preoperative optimization of frail older patiens. Eur J Surg Oncol. 2021;47:519–23.

    Article  PubMed  Google Scholar 

  51. Carli F, Charlebois P, Baldini G, Cachero O, Stein B. An integrated multidisciplinary approach to implementation of a fast-track program for laparoscopic colorectal surgery. Can J Anaesth. 2009;56:837–42.

    Article  PubMed  Google Scholar 

  52. • Carli F, Bousquet-Dion G, Awasthi R, Elsherbini N, Liberman S, Boutros M, et al. Effect of multimodal prehabilitation vs postoperative rehabilitation on 30-day postoperative complications for frail patients undergoing resection of colorectal cancer: a randomized clinical trial. JAMA Surg. 2020;155:233–42. This study suggests that prehabilitation does not improve postoperative outcomes compared with postoperative rehabilitation in frail patients undergoing colorectal cancer resection

    Article  PubMed  PubMed Central  Google Scholar 

  53. Barberan-Garcia A, Ubré M, Roca J, Lacy AM, Burgos F, Risco R, et al. Personalised prehabilitation in high-risk patients undergoing elective major abdominal surgery : a randomized blinded controlled trial. Ann Surg. 2018;267:50–6.

    Article  PubMed  Google Scholar 

  54. • Trépanier M, Minnella EM, Paradis T, Awasthi R, Kaneva P, Schwartzman K, et al. Improved disease-free survival after prehabilitation for colorectal cancer surgery. Ann Surg. 2019;270:493–501 Of importance This study demonstrated an association between prehabilitation and improved 5-year DFS in stage III colorectal cancer (73.4% vs 50.9%, P = 0.044).

  55. Hu WH, Cajas-Monson LC, Eisenstein S, Parry L, Cosman B, Ramamoorthy S. Preoperative malnutrition assessments as predictors of postoperative mortality and morbidity in colorectal cancer: an analysis of ACS-NSQIP. Nutr J. 2015;14:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Song H-N, Wang W-B, Luo X, Huang D-D, Ruan X-J, Xing C-G, et al. Effect of GLIM-defined malnutrition on postoperative clinical outcomes in patients with colorectal cancer. Jpn J Clin Oncol. 2022;49:972–84.

    Google Scholar 

  57. Gillis C, Buhler K, Bresee L, Carli F, Gramlich L, Culos-Reed N, et al. Effects of nutritional prehabilitation, with and without exercise, on outcomes of patients who undergo colorectal surgery: a systematic review and meta-analysis. Gastroenterology. 2018;155:391-410.e4.

    Article  PubMed  Google Scholar 

  58. McIsaac DI, Gill M, Boland L, Hutton B, Branje K, Shaw J, et al. Prehabilitation in adult patients undergoing surgery: an umbrella review of systematic reviews. Br J Anaesth. 2022;128:244–57.

    Article  PubMed  Google Scholar 

  59. Gillis C, Ljungqvist O, Carli F. Prehabilitation, enhanced recovery after surgery, or both? A narrative review. Br J Anaesth. 2022;128(3):434–48.

  60. Broggi MS, Oladeji PO, Tahmid S, Hernandez-Irizarry R, Allen J. Depressive disorders lead to increased complications after geriatric hip fractures. Geriatr Orthop Surg Rehabil. 2021;25(12):21514593211016252.

    Google Scholar 

  61. AbuRuz ME, Al-Dweik G, Al-Akash HY. Checking the moderating effect of perceived control on the relationship between anxiety and postoperative hospital length of stay among coronary artery bypass graft patients. Int J Gen Med. 2019;12:79.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Manou-Stathopoulou V, Korbonits M, Ackland GL. Redefining the perioperative stress response: a narrative review. Br J Anaesth. 2019;123:570–83.

    Article  CAS  PubMed  Google Scholar 

  63. •• Eckerling A, Ricon-Becker I, Sorski L, Sandbank E, Ben-Eliyahu S. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer. 2021;21:767–85. This review describes the stress-mediated factors related to tumor growth identified by preclinical research and the parallel clinical findings.

  64. Tas F, Eralp Y, Basaran M, Sakar B, Alici S, Argon A, et al. Anemia in oncology practice: relation to diseases and their therapies. Am J Clin Oncol. 2002;25:371–9.

    Article  PubMed  Google Scholar 

  65. Liu X, Qiu H, Huang Y, Xu D, Li W, Li Y, et al. Impact of preoperative anemia on outcomes in patients undergoing curative resection for gastric cancer: a single-institution retrospective analysis of 2163 Chinese patients. Cancer Med. 2018;7:360–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal. 2014;21:1516–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;9(Suppl 5):10–7.

    Article  CAS  PubMed  Google Scholar 

  68. Leo C, Giaccia AJ, Denko NC. The hypoxic tumor microenvironment and gene expression. Semin Radiat Oncol. 2004;14:207–14.

    Article  PubMed  Google Scholar 

  69. Harrison L, Blackwell K. Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist. 2004;9(Suppl 5):31–40.

    Article  PubMed  Google Scholar 

  70. Richards T, Baikady RR, Clevenger B, Butcher A, Abeysiri S, Chau M, et al. Preoperative intravenous iron for anaemia in elective major open abdominal surgery: the PREVENTT RCT. Health Technol Assess. 2021;25:1–58.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Keeler BD, Dickson EA, Simpson JA, Ng O, Padmanabhan H, Brookes MJ, et al. The impact of pre-operative intravenous iron on quality of life after colorectal cancer surgery: outcomes from the intravenous iron in colorectal cancer-associated anaemia (IVICA) trial. Anaesthesia. 2019;74:714–25.

    Article  CAS  PubMed  Google Scholar 

  72. • Pang Q-Y, An R, Liu H-L. Perioperative transfusion and the prognosis of colorectal cancer surgery: a systematic review and meta-analysis. World J Surg Oncol. 2019;17:7. This meta-analysis of observational studies found that perioperative transfusion results in a significantly negative effect on long-term prognosis and increases short-term complications after colorectal cancer surgery.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Deeb A-P, Aquina CT, Monson JRT, Blumberg N, Becerra AZ, Fleming FJ. Allogeneic leukocyte-reduced red blood cell transfusion is associated with postoperative infectious complications and cancer recurrence after colon cancer resection. Dig Surg. 2020;37:163–70.

    Article  PubMed  Google Scholar 

  74. Petrelli F, Ghidini M, Ghidini A, Sgroi G, Vavassori I, Petrò D, et al. Red blood cell transfusions and the survival in patients with cancer undergoing curative surgery: a systematic review and meta-analysis. Surg Today. 2021;51:1535–57.

    Article  PubMed  Google Scholar 

  75. Velásquez JF, Cata JP. Transfusions of blood products and cancer outcomes. Rev Esp Anestesiol Reanim. 2015;62:461–7.

    Article  PubMed  Google Scholar 

  76. Ma X, Liu Y, Han Q, Han Y, Wang J, Zhang H. Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review). Int J Oncol. 2021;59(6):108. 

  77. Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D, et al. Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med. 2018;378:2263–74.

    Article  PubMed  Google Scholar 

  78. • Zorrilla-Vaca A, Ripolles-Melchor J, Fernandez-Valdes P, Ruiz-Escobar A. Association of liberal fluid therapy for colorectal cancer surgery and long-term oncologic recurrence. Ann Surg Oncol. 2022;29:1523–1525. This study showed that in patients undergoing elective colorectal surgery, liberal fluid therapy was associated with worse oncologic outcomes at 5-year follow-up.

  79. Diaper J, Schiffer E, Barcelos GK, Luise S, Schorer R, Ellenberger C, et al. Goal-directed hemodynamic therapy versus restrictive normovolemic therapy in major open abdominal surgery: a randomized controlled trial. Surgery. 2021;169:1164–74.

    Article  PubMed  Google Scholar 

  80. Ripollés-Melchor J, Chappell D, Espinosa, Mhyten MG, Abad-Gurumeta A, Bergese SD, et al. Perioperative fluid therapy recommendations for major abdominal surgery. Via RICA recommendations revisited. Part I: Physiological background. Rev Esp Anestesiol Reanim. 2017;64:328–38.

  81. Beilin B, Shavit Y, Razumovsky J, Wolloch Y, Zeidel A, Bessler H. Effects of mild perioperative hypothermia on cellular immune responses. Anesthesiology. 1998;89:1133–40.

    Article  CAS  PubMed  Google Scholar 

  82. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996;334:1209–15.

    Article  CAS  PubMed  Google Scholar 

  83. Gottschalk A, Sharma S, Ford J, Durieux ME, Tiouririne M. Review article: the role of the perioperative period in recurrence after cancer surgery. Anesth Analg. 2010 Jun;110:1636–43.

    Article  PubMed  Google Scholar 

  84. Mortensen K, Nilsson M, Slim K, Schäfer M, Mariette C, Braga M, et al. Consensus guidelines for enhanced recovery after gastrectomy: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Br J Surg. 2014;101:1209–29.

    Article  CAS  PubMed  Google Scholar 

  85. Gustafsson UO, Scott MJ, Schwenk W, Demartines N, Roulin D, Francis N, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced recovery after surgery (ERAS®) society recommendations. Clin Nutr. 2012;31:783–800.

    Article  CAS  PubMed  Google Scholar 

  86. Chang C-Y, Wu M-Y, Chien Y-J, Su I-M, Wang S-C, Kao M-C. Anesthesia and long-term oncological outcomes: a systematic review and meta-analysis. Anesth Analg. 2021;132:623–34.

    Article  PubMed  Google Scholar 

  87. •• Makito K, Matsui H, Fushimi K, Yasunaga H. Volatile versus total intravenous anesthesia for cancer prognosis in patients having digestive cancer surgery. Anesthesiology. 2020;133:764–73. A study of more than 200,000 patients found that oncologic outcomes at 5-year follow-up were not different depending on the type of anesthetic used.

    Article  CAS  PubMed  Google Scholar 

  88. Dobson GP. Addressing the global burden of trauma in major surgery. Front Surg. 2015;2:1–26.

    Article  Google Scholar 

  89. Zhang J, Yao N, Tian S. Morphine stimulates migration and growth and alleviates the effects of chemo drugs via AMPK-dependent induction of epithelial-mesenchymal transition in esophageal carcinoma cells. Biol Pharm Bull. 2020;43:774–81.

    Article  CAS  PubMed  Google Scholar 

  90. Gaspani L, Bianchi M, Limiroli E, Panerai AE, Sacerdote P. The analgesic drug tramadol prevents the effect of surgery on natural killer cell activity and metastatic colonization in rats. J Neuroimmunol. 2002;129:18–24.

    Article  CAS  PubMed  Google Scholar 

  91. Özgürbüz U, Gencür S, Kurt FÖ, Özkalkanlı M, Vatansever HS. The effects of tramadol on cancer stem cells and metabolic changes in colon carcinoma cells lines. Gene. 2019;718:144030.

    Article  PubMed  CAS  Google Scholar 

  92. Rangel FP, Auler JOC, Carmona MJC, Cordeiro MD, Nahas WC, Coelho RF, et al. Opioids and premature biochemical recurrence of prostate cancer: a randomised prospective clinical trial. Br J Anaesth. 2021;126:931–9.

    Article  CAS  PubMed  Google Scholar 

  93. Silagy AW, Hannum ML, Mano R, Attalla K, Scarpa JR, DiNatale RG, et al. Impact of intraoperative opioid and adjunct analgesic use on renal cell carcinoma recurrence: role for onco-anaesthesia. Br J Anaesth. 2020;125:e402–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Du KN, Feng L, Newhouse A, Mehta J, Lasala J, Mena GE, et al. Effects of intraoperative opioid use on recurrence-free and overall survival in patients with esophageal adenocarcinoma and squamous cell carcinoma. Anesth Analg. 2018;127(1):210–6.

  95. Sessler DI, Pei L, Huang Y, Fleischmann E, Marhofer P, Kurz A, et al. Recurrence of breast cancer after regional or general anaesthesia: a randomised controlled trial. Lancet. 2019;394:1807–15.

    Article  PubMed  Google Scholar 

  96. Falk W, Magnuson A, Eintrei C, Henningsson R, Myrelid P, Matthiessen P, et al. Comparison between epidural and intravenous analgesia effects on disease-free survival after colorectal cancer surgery: a randomised multicentre controlled trial. Br J Anaesth. 2021;127:65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kranke P, Jokinen J, Pace NL, Schnabel A, Hollmann MW, Hahnenkamp K, Eberhart LH, Poepping DM, Weibel S. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery. Cochrane Database Syst Rev. 2015; (7):CD009642.

  98. Zhang Y, Jing Y, Pan R, Ding K, Chen R, Meng Q. Mechanisms of cancer inhibition by local anesthetics. Front Pharmacol. 2021;12:770694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. López M, Padilla ML, García B, Orozco J, Rodilla AM. Prevention of acute postoperative pain in breast cancer: a comparison between opioids versus ketamine in the intraoperatory analgesia. Pain Res Manag. 2021;2021:1–8.

    Article  Google Scholar 

  100. Cho JS, Kim NY, Shim JK, Jun JH, Lee S, Kwak YL. The immunomodulatory effect of ketamine in colorectal cancer surgery: a randomized-controlled trial. Can J Anaesth. 2021;68:683–92.

    Article  CAS  PubMed  Google Scholar 

  101. Volta CA, Alvisi V, Campi M, Marangoni E, Alvisi R, Castellazzi M, et al. Influence of different strategies of volume replacement on the activity of matrix metalloproteinases: an in vitro and in vivo study. Anesthesiology. 2007;106:85–91.

    Article  CAS  PubMed  Google Scholar 

  102. Connolly JG, Tan KS, Mastrogiacomo B, Dycoco J, Caso R, Jones GD, et al. Intraoperative opioid exposure, tumour genomic alterations, and survival differences in people with lung adenocarcinoma. Br J Anaesth [Internet]. 2021;127:75–84.

    Article  CAS  Google Scholar 

  103. Chen HY, Li GH, Tan GC, Liang H, Lai XH, Huang Q, et al. Dexmedetomidine enhances hypoxia-induced cancer cell progression. Exp Ther Med. 2019;18:4820.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lavon H, Matzner P, Benbenishty A, Sorski L, Rossene E, Haldar R, et al. Dexmedetomidine promotes metastasis in rodent models of breast, lung, and colon cancers. Br J Anaesth. 2018;120:188–96.

    Article  CAS  PubMed  Google Scholar 

  105. Newhook TE, Soliz JM, Prakash LR, Hancher-Hodges S, Speer BB, Wilks JA, et al. Impact of intraoperative dexamethasone on surgical and oncologic outcomes for patients with resected pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2021;28:1563–9.

    Article  PubMed  Google Scholar 

  106. Kim MH, Kim DW, Park S, Kim JH, Lee KY, Hwang J, et al. Single dose of dexamethasone is not associated with postoperative recurrence and mortality in breast cancer patients: a propensity-matched cohort study. BMC Cancer. 2019;20(19):251.

    Article  Google Scholar 

  107. Yu HC, Luo YX, Peng H, Kang L, Huang MJ, Wang JP. Avoiding perioperative dexamethasone may improve the outcome of patients with rectal cancer. Eur J Surg Oncol. 2015;41:667–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

José A. García-Erce, Hematologist of the Banco de Sangre y Tejidos de Navarra (Pamplona, Spain) helped in the manuscript review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ripollés-Melchor.

Ethics declarations

Conflict of interest

Javier Ripollés-Melchor has payments from lectures from Edwards Lifesciences and Fresenius Kabi outside the submitted work. Ane Abad-Motos and Andrés Zorrilla-Vaca do not have existing conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Anesthesiology and Critical Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ripollés-Melchor, J., Abad-Motos, A. & Zorrilla-Vaca, A. Enhanced Recovery After Surgery (ERAS) in Surgical Oncology. Curr Oncol Rep 24, 1177–1187 (2022). https://doi.org/10.1007/s11912-022-01282-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01282-4

Keywords

Navigation