Skip to main content

Advertisement

Log in

Bone Quality in Relation to HIV and Antiretroviral Drugs

  • Co-infections and Comorbidity (D Bhattacharya, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

People living with HIV (PLWH) are at an increased risk for osteoporosis, a disease defined by the loss of bone mineral density (BMD) and deterioration of bone quality, both of which independently contribute to an increased risk of skeletal fractures. While there is an emerging body of literature focusing on the factors that contribute to BMD loss in PLWH, the contribution of these factors to bone quality changes are less understood. The current review summarizes and critically reviews the data describing the effects of HIV, HIV disease-related factors, and antiretroviral drugs (ARVs) on bone quality.

Recent Findings

The increased availability of high-resolution peripheral quantitative computed tomography has confirmed that both HIV infection and ARVs negatively affect bone architecture. There is considerably less data on their effects on bone remodeling or the composition of bone matrix. Whether changes in bone quality independently predict fracture risk, as seen in HIV-uninfected populations, is largely unknown.

Summary

The available data suggests that bone quality deterioration occurs in PLWH. Future studies are needed to define which factors, viral or ARVs, contribute to loss of bone quality and which bone quality factors are most associated with increased fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wandeler G, Johnson LF, Egger M. Trends in life expectancy of HIV-positive adults on antiretroviral therapy across the globe: comparisons with general population. Curr Opin HIV AIDS. 2016;11(5):492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20(17):2165–74.

    Article  PubMed  Google Scholar 

  3. Premaor MO, Compston JE. The Hidden Burden of Fractures in People Living With HIV. JBMR Plus. 2018;2(5):247–56.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moran CA, Weitzmann MN, Ofotokun I. Bone Loss in HIV Infection. Curr Treat Options Infect Dis. 2017;9(1):52–67.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chang CJ, et al. People with HIV infection had lower bone mineral density and increased fracture risk: a meta-analysis. Arch Osteoporos. 2021;16(1):47.

    Article  PubMed  Google Scholar 

  6. Zeng YQ, et al. Prevalence and risk factors for bone mineral density changes in antiretroviral therapy-naive human immunodeficiency virus-infected adults: a Chinese cohort study. Chin Med J (Engl). 2020;133(24):2940–6.

    Article  Google Scholar 

  7. Titanji K, et al. Dysregulated B cell expression of RANKL and OPG correlates with loss of bone mineral density in HIV infection. PLoS Pathog. 2014;10(10):e1004497.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hoy JF, et al. Immediate initiation of antiretroviral therapy for HIV infection accelerates bone loss relative to deferring therapy: findings from the start bone mineral density substudy, a randomized trial. J Bone Miner Res. 2017;32(9):1945–55.

    Article  CAS  PubMed  Google Scholar 

  9. Compston J. HIV infection and osteoporosis. Bonekey Rep. 2015;4:636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McGinty T, et al. Does systemic inflammation and immune activation contribute to fracture risk in HIV? Curr Opin HIV AIDS. 2016;11(3):253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carr A, et al. The rate of bone loss slows after 1–2 years of initial antiretroviral therapy: final results of the Strategic Timing of Antiretroviral Therapy (START) bone mineral density substudy. HIV Med. 2020;21(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  12. McComsey GA, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis. 2010;51(8):937–46.

    Article  PubMed  Google Scholar 

  13. Delpino MV, Quarleri J. Influence of HIV Infection and Antiretroviral Therapy on Bone Homeostasis. Front Endocrinol (Lausanne). 2020;11:502.

    Article  Google Scholar 

  14. Shiau S, Arpadi SM, Yin MT. Bone Update: Is It Still an Issue Without Tenofovir Disoproxil Fumarate? Curr HIV/AIDS Rep. 2020;17(1):1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grant PM, Cotter AG. Tenofovir and bone health. Curr Opin HIV AIDS. 2016;11(3):326–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moran CA, Weitzmann MN, Ofotokun I. The protease inhibitors and HIV-associated bone loss. Curr Opin HIV AIDS. 2016;11(3):333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab. 2016;14(3):133–49.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nih Consensus Development Panel on Osteoporosis Prevention, D. and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Article  Google Scholar 

  19. Seeman E, Delmas PD. Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.

    Article  CAS  PubMed  Google Scholar 

  20. Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int. 2002;13(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  21. Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14(5):118–27.

    Article  Google Scholar 

  22. Unnanuntana A, et al. Diseases Affecting Bone Quality: Beyond Osteoporosis. Clin Orthop Relat Res. 2011;469(8):2194–206.

    Article  PubMed  Google Scholar 

  23. Compston J. Bone quality: what is it and how is it measured? Arq Bras Endocrinol Metabol. 2006;50(4):579–85.

    Article  PubMed  Google Scholar 

  24. Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.

    Article  PubMed  Google Scholar 

  25. Surowiec RK, Allen MR, Wallace JM. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep. 2022;16:101161.

    Article  CAS  PubMed  Google Scholar 

  26. Starup-Linde J, et al. Management of Osteoporosis in Patients Living With HIV—A Systematic Review and Meta-analysis. JAIDS J Acquir Immune Defic Syndr. 2020;83(1):1–8.

    Article  PubMed  Google Scholar 

  27. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385–96.

    Article  CAS  PubMed  Google Scholar 

  28. Kylmaoja E, et al. Peripheral blood monocytes show increased osteoclast differentiation potential compared to bone marrow monocytes. Heliyon. 2018;4(9):e00780.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Campbell JH, et al. The importance of monocytes and macrophages in HIV pathogenesis, treatment, and cure. AIDS. 2014;28(15):2175–87.

    Article  CAS  PubMed  Google Scholar 

  30. Gohda J, et al. HIV-1 replicates in human osteoclasts and enhances their differentiation in vitro. Retrovirology. 2015;12:12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Raynaud-Messina B, et al. Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss. Proc Natl Acad Sci USA. 2018;115(11):E2556–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simonet WS, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.

    Article  CAS  PubMed  Google Scholar 

  33. Anderson DM, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9.

    Article  CAS  PubMed  Google Scholar 

  34. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gibellini D, et al. RANKL/OPG/TRAIL plasma levels and bone mass loss evaluation in antiretroviral naive HIV-1-positive men. J Med Virol. 2007;79(10):1446–54.

    Article  CAS  PubMed  Google Scholar 

  36. Kelesidis T, et al. Brief Report: Changes in Plasma RANKL-Osteoprotegerin in a Prospective, Randomized Clinical Trial of Initial Antiviral Therapy: A5260s. J Acquir Immune Defic Syndr. 2018;78(3):362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seminari E, et al. Osteoprotegerin and bone turnover markers in heavily pretreated HIV-infected patients. HIV Med. 2005;6(3):145–50.

    Article  CAS  PubMed  Google Scholar 

  38. Mascarau R, et al. HIV-1-Infected Human Macrophages, by Secreting RANK-L, Contribute to Enhanced Osteoclast Recruitment. Int J Mol Sci. 2020;21(9):3154. https://doi.org/10.3390/ijms21093154.

    Article  CAS  PubMed Central  Google Scholar 

  39. Titanji K, et al. T-cell receptor activator of nuclear factor-kappaB ligand/osteoprotegerin imbalance is associated with HIV-induced bone loss in patients with higher CD4+ T-cell counts. AIDS. 2018;32(7):885–94.

    Article  CAS  PubMed  Google Scholar 

  40. Fakruddin JM, Laurence J. HIV-1 Vpr enhances production of receptor of activated NF-κB ligand (RANKL) via potentiation of glucocorticoid receptor activity. Adv Virol. 2005;150(1):67–78.

    CAS  Google Scholar 

  41. Fakruddin JM, Laurence J. HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor kappa B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-gamma/RANKL cross-talk. J Biol Chem. 2003;278(48):48251–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kelesidis T, et al. Role of RANKL-RANK/osteoprotegerin pathway in cardiovascular and bone disease associated with HIV infection. AIDS Rev. 2014;16(3):123–33.

    PubMed  PubMed Central  Google Scholar 

  43. Mayer KH, et al. Immune reconstitution in HIV-infected patients. Clin Infect Dis. 2004;38(8):1159–66.

    Article  Google Scholar 

  44. Müller M, et al. Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(4):251–61.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ofotokun I, et al. Antiretroviral therapy induces a rapid increase in bone resorption that is positively associated with the magnitude of immune reconstitution in HIV infection. AIDS (London, England). 2016;30(3):405–14.

    Article  CAS  Google Scholar 

  46. Ponzetti M, Rucci N. Updates on osteoimmunology: What’s new on the cross-talk between bone and immune system. Front Endocrinol. 2019;10:236.

    Article  Google Scholar 

  47. Brown TT, et al. Bone turnover, osteoprotegerin/RANKL and inflammation with antiretroviral initiation: tenofovir versus non-tenofovir regimens. Antivir Ther. 2011;16(7):1063–72.

    Article  CAS  PubMed  Google Scholar 

  48. Mathiesen IH, et al. Complete manuscript Title: Changes in RANKL during the first two years after cART initiation in HIV-infected cART naive adults. BMC Infect Dis. 2017;17(1):262.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jain RG, Lenhard JM. Select HIV protease inhibitors alter bone and fat metabolism ex vivo. J Biol Chem. 2002;277(22):19247–50.

    Article  CAS  PubMed  Google Scholar 

  50. Modarresi R, et al. WNT/beta-catenin signaling is involved in regulation of osteoclast differentiation by human immunodeficiency virus protease inhibitor ritonavir: relationship to human immunodeficiency virus-linked bone mineral loss. Am J Pathol. 2009;174(1):123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yin MT, et al. Effects of HIV infection and antiretroviral therapy with ritonavir on induction of osteoclast-like cells in postmenopausal women. Osteoporos Int. 2011;22(5):1459–68.

    Article  CAS  PubMed  Google Scholar 

  52. Wang MW, et al. The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. J Clin Invest. 2004;114(2):206–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rutkovskiy A, Stenslokken KO, Vaage IJ. Osteoblast Differentiation at a Glance. Med Sci Monit Basic Res. 2016;22:95–106.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Robling AG, Bonewald LF. The Osteocyte: New Insights. Annu Rev Physiol. 2020;82:485–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gibellini D, et al. HIV-1 triggers apoptosis in primary osteoblasts and HOBIT cells through TNFalpha activation. J Med Virol. 2008;80(9):1507–14.

    Article  CAS  PubMed  Google Scholar 

  56. Nacher M, et al. Osteoblasts in HIV-infected patients: HIV-1 infection and cell function. AIDS (London, England). 2001;15(17):2239–43.

    Article  CAS  Google Scholar 

  57. Cotter EJ, et al. Mechanism of HIV protein induced modulation of mesenchymal stem cell osteogenic differentiation. BMC Musculoskelet Disord. 2008;9:33.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Beaupere C, et al. The HIV proteins Tat and Nef promote human bone marrow mesenchymal stem cell senescence and alter osteoblastic differentiation. Aging Cell. 2015;14(4):534–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Imamichi H, et al. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Natl Acad Sci U S A. 2016;113(31):8783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Imamichi H, et al. Defective HIV-1 proviruses produce viral proteins. Proc Natl Acad Sci. 2020;117(7):3704–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hernandez-Vallejo SJ, et al. HIV protease inhibitors induce senescence and alter osteoblastic potential of human bone marrow mesenchymal stem cells: beneficial effect of pravastatin. Aging Cell. 2013;12(6):955–65.

    Article  CAS  PubMed  Google Scholar 

  62. Cazzaniga A, et al. Unveiling the basis of antiretroviral therapy-induced osteopenia: the effects of Dolutegravir, Darunavir and Atazanavir on osteogenesis. Aids. 2021;35(2):213–8.

    Article  CAS  PubMed  Google Scholar 

  63. Malizia AP, et al. HIV protease inhibitors selectively induce gene expression alterations associated with reduced calcium deposition in primary human osteoblasts. AIDS Res Hum Retroviruses. 2007;23(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  64. Malizia AP, et al. HIV1 protease inhibitors selectively induce inflammatory chemokine expression in primary human osteoblasts. Antiviral Res. 2007;74(1):72–6.

    Article  CAS  PubMed  Google Scholar 

  65. Bendre MS, et al. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 2003;33(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  66. Kim MS, et al. MCP-1-induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NFkappaB ligand for bone resorption. J Biol Chem. 2006;281(2):1274–85.

    Article  CAS  PubMed  Google Scholar 

  67. Grigsby IF, et al. Tenofovir-associated bone density loss. Ther Clin Risk Manag. 2010;6:41–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Barbieri AM, et al. Suppressive effects of tenofovir disoproxil fumarate, an antiretroviral prodrug, on mineralization and type II and type III sodium-dependent phosphate transporters expression in primary human osteoblasts. J Cell Biochem. 2018;119(6):4855–66.

    Article  CAS  PubMed  Google Scholar 

  69. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.

    Article  CAS  PubMed  Google Scholar 

  70. Delgado-Calle J, Bellido T. The osteocyte as a signaling cell. Physiol Rev. 2022;102(1):379–410.

    Article  CAS  PubMed  Google Scholar 

  71. Cummins NW, et al. Human immunodeficiency virus envelope protein Gp120 induces proliferation but not apoptosis in osteoblasts at physiologic concentrations. PLoS ONE. 2011;6(9):e24876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vikulina T, et al. Alterations in the immuno-skeletal interface drive bone destruction in HIV-1 transgenic rats. Proc Natl Acad Sci U S A. 2010;107(31):13848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Conesa-Buendia FM, et al. Tenofovir Causes Bone Loss via Decreased Bone Formation and Increased Bone Resorption, Which Can Be Counteracted by Dipyridamole in Mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 2019;34(5):923–38.

    Article  CAS  Google Scholar 

  74. Carnovali M, et al. Tenofovir and bone: age-dependent effects in a zebrafish animal model. Antivir Ther. 2016;21(7):587–94.

    Article  CAS  PubMed  Google Scholar 

  75. Castillo AB, et al. Tenofovir treatment at 30 mg/kg/day can inhibit cortical bone mineralization in growing rhesus monkeys (Macaca mulatta). J Orthop Res. 2002;20(6):1185–9.

    Article  CAS  PubMed  Google Scholar 

  76. Serrano S, et al. Bone remodelling in human immunodeficiency virus-1-infected patients. A histomorphometric study. Bone. 1995;16(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  77. Ramalho J, et al. Treatment of human immunodeficiency virus infection with tenofovir disoproxil fumarate-containing antiretrovirals maintains low bone formation rate, but increases osteoid volume on bone histomorphometry. J Bone Miner Res. 2019;34:1574–84.

    Article  CAS  PubMed  Google Scholar 

  78. Johansson H, et al. A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int. 2014;94(5):560–7.

    Article  CAS  PubMed  Google Scholar 

  79. Garnero P, et al. Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res. 2002;17(5):826–33.

    Article  CAS  PubMed  Google Scholar 

  80. Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017;5(11):908–23.

    Article  PubMed  Google Scholar 

  81. Ofotokun I, et al. A Single-dose Zoledronic Acid Infusion Prevents Antiretroviral Therapy-induced Bone Loss in Treatment-naive HIV-infected Patients: A Phase IIb Trial. Clin Infect Dis. 2016;63(5):663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bolland MJ, et al. Effects of intravenous zoledronate on bone turnover and bone density persist for at least five years in HIV-infected men. J Clin Endocrinol Metab. 2012;97(6):1922–8.

    Article  CAS  PubMed  Google Scholar 

  83. Han WM, et al. Bone mineral density changes among people living with HIV who have started with TDF-containing regimen: A five-year prospective study. PLoS ONE. 2020;15(3):e0230368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Slama L, et al. Changes in bone turnover markers with HIV seroconversion and ART initiation. J Antimicrob Chemother. 2017;72(5):1456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang L, et al. Bone turnover and bone mineral density in HIV-1 infected Chinese taking highly active antiretroviral therapy -a prospective observational study. BMC Musculoskelet Disord. 2013;14:224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wattanachanya L, et al. Antiretroviral-naive HIV-infected patients had lower bone formation markers than HIV-uninfected adults. AIDS Care. 2019;32:1–10.

    Google Scholar 

  87. Marques de Menezes EG, et al. Serum extracellular vesicles expressing bone activity markers associate with bone loss after HIV antiretroviral therapy. Aids. 2020;34(3):351–61.

    Article  CAS  PubMed  Google Scholar 

  88. Oster Y, et al. Increase in bone turnover markers in HIV patients treated with tenofovir disoproxil fumarate combined with raltegravir or efavirenz. Bone Rep. 2020;13:100727.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Focà E, et al. Prospective evaluation of bone markers, parathormone and 1,25-(OH)2 vitamin D in HIV-positive patients after the initiation of tenofovir/emtricitabine with atazanavir/ritonavir or efavirenz. BMC Infect Dis. 2012;12:38.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Haskelberg H, et al. Changes in bone turnover and bone loss in HIV-infected patients changing treatment to tenofovir-emtricitabine or abacavir-lamivudine. PLoS ONE. 2012;7(6):e38377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stellbrink HJ, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis. 2010;51(8):963–72.

    Article  PubMed  Google Scholar 

  92. Tebas P, et al. Greater change in bone turnover markers for efavirenz/emtricitabine/tenofovir disoproxil fumarate versus dolutegravir + abacavir/lamivudine in antiretroviral therapy-naive adults over 144 weeks. AIDS (London, England). 2015;29:2459–64.

    Article  CAS  Google Scholar 

  93. Bernardino JI, et al. Bone mineral density and inflammatory and bone biomarkers after darunavir-ritonavir combined with either raltegravir or tenofovir-emtricitabine in antiretroviral-naive adults with HIV-1: a substudy of the NEAT001/ANRS143 randomised trial. Lancet HIV. 2015;2(11):e464–73.

    Article  PubMed  Google Scholar 

  94. Cotter AG, et al. Impact of switching from zidovudine to tenofovir disoproxil fumarate on bone mineral density and markers of bone metabolism in virologically suppressed HIV-1 infected patients; a substudy of the PREPARE study. J Clin Endocrinol Metab. 2013;98(4):1659–66.

    Article  CAS  PubMed  Google Scholar 

  95. Negredo E, et al. Switching from tenofovir to abacavir in HIV-1-infected patients with low bone mineral density: changes in bone turnover markers and circulating sclerostin levels. J Antimicrob Chemother. 2015;70(7):2104–7.

    Article  CAS  PubMed  Google Scholar 

  96. Wohl DA, et al. The ASSURE study: HIV-1 suppression is maintained with bone and renal biomarker improvement 48 weeks after ritonavir discontinuation and randomized switch to abacavir/lamivudine + atazanavir. HIV Med. 2016;17(2):106–17.

    Article  CAS  PubMed  Google Scholar 

  97. Bloch M, et al. Switch from tenofovir to raltegravir increases low bone mineral density and decreases markers of bone turnover over 48 weeks. HIV Med. 2014;15(6):373–80.

    Article  CAS  PubMed  Google Scholar 

  98. Ibrahim F, Samarawickrama A, Hamzah L. Bone mineral density, kidney function, weight gain and insulin resistance in women who switch from TDF/FTC/NNRTI to ABC/3TC/DTG. HIV Med. 2021;22(2):83–91.

    Article  CAS  PubMed  Google Scholar 

  99. Haskelberg H, Carr A, Emery S. Bone turnover markers in HIV disease. AIDS Rev. 2011;13(4):240–50.

    PubMed  Google Scholar 

  100. Ross RD, et al. Circulating sclerostin is associated with bone mineral density independent of HIV-serostatus. Bone Rep. 2020;12:100279.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Erlandson KM, et al. Plasma Sclerostin in HIV-Infected Adults on Effective Antiretroviral Therapy. AIDS Res Hum Retroviruses. 2015;31(7):731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Masiá M, et al. Early changes in parathyroid hormone concentrations in HIV-infected patients initiating antiretroviral therapy with tenofovir. AIDS Res Hum Retroviruses. 2012;28(3):242–6.

    Article  PubMed  Google Scholar 

  103. Childs KE, et al. Short communication: Inadequate vitamin D exacerbates parathyroid hormone elevations in tenofovir users. AIDS Res Hum Retroviruses. 2010;26(8):855–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Havens PL, et al. Tenofovir disoproxil fumarate appears to disrupt the relationship of vitamin D and parathyroid hormone. Antivir Ther. 2018;23(7):623–8.

    Article  CAS  PubMed  Google Scholar 

  105. Hsieh E, Yin MT. Continued Interest and Controversy: Vitamin D in HIV. Curr HIV/AIDS Rep. 2018;15(3):199–211.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Menezes EGM, et al. Serum extracellular vesicles expressing bone activity markers associate with bone loss after HIV antiretroviral therapy. AIDS (London, England). 2019;34:351.

    Article  Google Scholar 

  107. Yavropoulou MP, et al. Circulating microRNAs related to bone metabolism in HIV-associated bone loss. Biomedicines. 2021;9(4):443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lerma-Chippirraz E, et al. Inflammation status in HIV-positive individuals correlates with changes in bone tissue quality after initiation of ART. J Antimicrob Chemother. 2019;74(5):1381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. French MA, et al. Serum immune activation markers are persistently increased in patients with HIV infection after 6 years of antiretroviral therapy despite suppression of viral replication and reconstitution of CD4+ T cells. J Infect Dis. 2009;200(8):1212–5.

    Article  CAS  PubMed  Google Scholar 

  110. Guder C, et al. Osteoimmunology: a current update of the interplay between bone and the immune system. Front Immunol. 2020;11:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brown TT, et al. Changes in bone mineral density after initiation of antiretroviral treatment with Tenofovir Disoproxil Fumarate/Emtricitabine Plus Atazanavir/Ritonavir, Darunavir/Ritonavir, or Raltegravir. J Infect Dis. 2015;212(8):1241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ofotokun I, et al. Role of T-cell reconstitution in HIV-1 antiretroviral therapy-induced bone loss. Nat Commun. 2015;6:8282.

    Article  CAS  PubMed  Google Scholar 

  113. Gazzola L, et al. Association between peripheral T-Lymphocyte activation and impaired bone mineral density in HIV-infected patients. J Transl Med. 2013;11:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Manavalan JS, et al. Abnormal bone acquisition with early-life HIV infection: Role of immune activation and senescent Osteogenic precursors. J Bone Miner Res. 2016;31(11):1988–96.

    Article  CAS  PubMed  Google Scholar 

  115. Weitzmann MN et al. Immune reconstitution bone loss exacerbates bone degeneration due to natural aging in a mouse model. J Infect Dis. https://doi.org/10.1093/infdis/jiab631

  116. Matuszewska A, et al. Effects of efavirenz and tenofovir on bone tissue in Wistar rats. Adv Clin Exp Med. 2020;29(11):1265–75.

    Article  PubMed  Google Scholar 

  117. Conradie MM, et al. A direct comparison of the effects of the antiretroviral drugs stavudine, tenofovir and the combination Lopinavir/Ritonavir on bone metabolism in a rat model. Calcif Tissue Int. 2017;101(4):422–32.

    Article  CAS  PubMed  Google Scholar 

  118. Watkins ME, et al. Development of a novel formulation that improves preclinical bioavailability of Tenofovir Disoproxil Fumarate. J Pharm Sci. 2017;106(3):906–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sornay-Rendu E, et al. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22(3):425–33.

    Article  PubMed  Google Scholar 

  120. Peacock M, et al. Better discrimination of hip fracture using bone density, geometry and architecture. Osteoporos Int. 1995;5(3):167–73.

    Article  CAS  PubMed  Google Scholar 

  121. Sheu Y, et al. Bone strength measured by peripheral quantitative computed tomography and the risk of nonvertebral fractures: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2011;26(1):63–71.

    Article  PubMed  Google Scholar 

  122. Weitzmann MN, et al. Homeostatic expansion of CD4+ T Cells promotes cortical and trabecular bone loss, whereas CD8+ T Cells induce trabecular bone loss only. J Infect Dis. 2017;216(9):1070–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Matuszewska A, et al. Long-term administration of abacavir and etravirine impairs semen quality and alters redox system and bone metabolism in growing male wistar rats. Oxid Med Cell Longev. 2021;2021:5596090.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Harvey NC, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ciullini L, et al. Trabecular bone score (TBS) is associated with sub-clinical vertebral fractures in HIV-infected patients. J Bone Miner Metab. 2018;36(1):111–8.

    Article  PubMed  Google Scholar 

  126. McGinty T, et al. Assessment of trabecular bone score, an index of bone microarchitecture, in HIV positive and HIV negative persons within the HIV UPBEAT cohort. PLoS ONE. 2019;14(3):e0213440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim YJ, et al. Trabecular bone scores in young HIV-infected men: a matched case-control study. BMC Musculoskelet Disord. 2020;21(1):94.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sharma A, et al. HIV infection is associated with abnormal bone microarchitecture: measurement of trabecular bone score in the women’s interagency HIV study. J Acquir Immune Defic Syndr. 2018;78(4):441–9.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Winzenrieth R, Michelet F, Hans D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom. 2013;16(3):287–96.

    Article  PubMed  Google Scholar 

  130. Rajan R, et al. Trabecular Bone Score-An Emerging Tool in the Management of Osteoporosis. Indian J Endocrinol Metab. 2020;24(3):237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kazakia GJ, et al. Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density. Quant Imaging Med Surg. 2018;8(1):5–13.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Biver E, et al. Microstructural alterations of trabecular and cortical bone in long-term HIV-infected elderly men on successful antiretroviral therapy. AIDS. 2014;28(16):2417–27.

    Article  CAS  PubMed  Google Scholar 

  133. Macdonald HM, et al. Deficits in bone strength, density and microarchitecture in women living with HIV: A cross-sectional HR-pQCT study. Bone. 2020;138:115509.

    Article  CAS  PubMed  Google Scholar 

  134. Shiau S, et al. Deficits in bone architecture and strength in children living with HIV on antiretroviral therapy. J Acquir Immune Defic Syndr. 2020;84(1):101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Calmy A, et al. Long-term HIV infection and antiretroviral therapy are associated with bone microstructure alterations in premenopausal women. Osteoporos Int. 2013;24(6):1843–52.

    Article  CAS  PubMed  Google Scholar 

  136. Yin MT, et al. Trabecular and cortical microarchitecture in postmenopausal HIV-infected women. Calcif Tissue Int. 2013;92(6):557–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sellier P, et al. Disrupted trabecular bone micro-architecture in middle-aged male HIV-infected treated patients. HIV Med. 2016;17(7):550–6.

    Article  CAS  PubMed  Google Scholar 

  138. Foreman SC, et al. Factors associated with bone microstructural alterations assessed by HR-pQCT in long-term HIV-infected individuals. Bone. 2020;133: 115210.

    Article  CAS  PubMed  Google Scholar 

  139. Vilayphiou N, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res. 2011;26(5):965–73.

    Article  PubMed  Google Scholar 

  140. Wang X, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27(4):808–16.

    Article  PubMed  Google Scholar 

  141. Guerri-Fernandez R, et al. Bone density, microarchitecture, and tissue quality after long-term treatment with Tenofovir/Emtricitabine or Abacavir/Lamivudine. J Acquir Immune Defic Syndr (1999). 2017;75(3):322–7.

    Article  Google Scholar 

  142. Güerri-Fernández R, et al. Brief Report: HIV Infection Is Associated With Worse Bone Material Properties, Independently of Bone Mineral Density. J Acquir Immune Defic Syndr. 2016;72(3):314–8.

    Article  PubMed  Google Scholar 

  143. Soldado-Folgado J, et al. Bone density, microarchitecture and tissue quality after 1 year of treatment with dolutegravir/abacavir/lamivudine. J Antimicrob Chemother. 2020;75(10):2998–3003.

    Article  CAS  PubMed  Google Scholar 

  144. Pitukcheewanont P, et al. Bone measures in HIV-1 infected children and adolescents: disparity between quantitative computed tomography and dual-energy X-ray absorptiometry measurements. Osteoporos Int. 2005;16(11):1393–6.

    Article  PubMed  Google Scholar 

  145. Tan DH, et al. Novel imaging modalities for the comparison of bone microarchitecture among HIV+ patients with and without fractures: a pilot study. HIV Clin Trials. 2017;18(1):28–38.

    Article  PubMed  Google Scholar 

  146. Abraham AG, et al. The combined effects of age and HIV on the anatomic distribution of cortical and cancellous bone in the femoral neck among men and women. AIDS. 2021;35(15):2513–22.

    Article  CAS  PubMed  Google Scholar 

  147. Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2013;2:447.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a subcontract from Cook County Clinical Research Site of the MWCCS (U01HL146245) and the National Institute of Arthritis and Musculoskeletal and Skin (NIAMS) under grant number AR079309 (RDR), National Institute of Allergy and Infectious Disease (NIAID) under grant K24AI155230 (MTY), and National Heart, Lung, and Blood Institute (NHLBI) under grant number 1U01HL14204 (AS). The contents of this publication are solely the responsibility of the authors and do not represent the official views of the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Ross.

Ethics declarations

Competing Interests

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Co-infections and Comorbidity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olali, A., Carpenter, K., Myers, M. et al. Bone Quality in Relation to HIV and Antiretroviral Drugs. Curr HIV/AIDS Rep 19, 312–327 (2022). https://doi.org/10.1007/s11904-022-00613-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-022-00613-1

Keywords

Navigation