Skip to main content

Advertisement

Log in

Effects of HIV infection and antiretroviral therapy with ritonavir on induction of osteoclast-like cells in postmenopausal women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Ritonavir (RTV) is a commonly used antiretroviral associated with bone loss. We show that peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus (HIV)-positive women on RTV are more likely to differentiate into osteoclast-like cells when cultured with their own sera than PBMCs and sera from HIV− women or HIV+ on other antiretrovirals.

Introduction

RTV increases differentiation of human adherent PBMCs to functional osteoclasts in vitro, and antiretroviral regimens containing RTV have been associated with low bone mineral density (BMD) and bone loss.

Methods

BMD, proresorptive cytokines, bone turnover markers (BTMs), and induction of osteoclast-like cells from adherent PBMCs incubated either with macrophage colony-stimulating factor (MCSF) and receptor activator of nuclear factor κB ligand (RANKL) or with autologous serum were compared in 51 HIV− and 68 HIV+ postmenopausal women.

Results

BMD was lower, and serum proresorptive cytokines and BTMs were higher in HIV+ versus HIV− women. Differentiation of osteoclast-like cells from adherent PBMCs exposed to either MCSF/RANKL or autologous serum was greater in HIV+ women. Induction of osteoclast-like cells was greater from PBMCs exposed to autologous sera from HIV+ women on RTV-containing versus other regimens (172 ± 14% versus 110 ± 10%, p < 0.001). Serum-based induction of osteoclast-like cells from adherent PBMCs correlated with certain BTMs but not BMD.

Conclusions

HIV infection and antiretroviral therapy are associated with higher BTMs and increased differentiation of osteoclast-like cells from adherent PBMCs, especially in women on regimens containing RTV. HIV+ postmenopausal women receiving RTV may be at greater risk for bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brown TT, Qaqish RB (2006) Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20:2165–2174

    Article  PubMed  Google Scholar 

  2. Bolland MJ, Grey AB, Gamble GD, Reid IR (2007) Low body weight mediates the relationship between HIV infection and low bone mineral density: a meta-analysis. J Clin Endocrinol Metab 92:4522–4528

    Article  PubMed  CAS  Google Scholar 

  3. Grinspoon S, Corcoran C, Miller K, Biller BM, Askari H, Wang E, Hubbard J, Anderson EJ, Basgoz N, Heller HM, Klibanski A (1997) Body composition and endocrine function in women with acquired immunodeficiency syndrome wasting. J Clin Endocrinol Metab 82:1332–1337

    Article  PubMed  CAS  Google Scholar 

  4. Cofrancesco J Jr, Whalen JJ 3rd, Dobs AS (1997) Testosterone replacement treatment options for HIV-infected men. J Acquir Immune Defic Syndr Hum Retrovirol 16:254–265

    PubMed  CAS  Google Scholar 

  5. Cotter EJ, Malizia AP, Chew N, Powderly WG, Doran PP (2007) HIV proteins regulate bone marker secretion and transcription factor activity in cultured human osteoblasts with consequent potential implications for osteoblast function and development. AIDS Res Hum Retroviruses 23:1521–1530

    Article  PubMed  CAS  Google Scholar 

  6. Gibellini D, De Crignis E, Ponti C, Cimatti L, Borderi M, Tschon M, Giardino R, Re MC (2008) HIV-1 triggers apoptosis in primary osteoblasts and HOBIT cells through TNFalpha activation. J Med Virol 80:1507–1514

    Article  PubMed  CAS  Google Scholar 

  7. Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192

    Article  PubMed  CAS  Google Scholar 

  8. Carr A, Miller J, Eisman JA, Cooper DA (2001) Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight pre-antiretroviral therapy. AIDS 15:703–709

    Article  PubMed  CAS  Google Scholar 

  9. Knobel H, Guelar A, Vallecillo G, Nogues X, Diez A (2001) Osteopenia in HIV-infected patients: is it the disease or is it the treatment? AIDS 15:807–808

    Article  PubMed  CAS  Google Scholar 

  10. Moore AL, Vashisht A, Sabin CA, Mocroft A, Madge S, Phillips AN, Studd JW, Johnson MA (2001) Reduced bone mineral density in HIV-positive individuals. AIDS 15:1731–1733

    Article  PubMed  CAS  Google Scholar 

  11. Tebas P, Powderly WG, Claxton S, Marin D, Tantisiriwat W, Teitelbaum SL, Yarasheski KE (2000) Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS (London, England) 14:F63–F67

    Article  CAS  Google Scholar 

  12. Bruera D, Luna N, David DO, Bergoglio LM, Zamudio J (2003) Decreased bone mineral density in HIV-infected patients is independent of antiretroviral therapy. AIDS 17:1917–1923

    Article  PubMed  Google Scholar 

  13. Gallant JE, Staszewski S, Pozniak AL, DeJesus E, Suleiman JM, Miller MD, Coakley DF, Lu B, Toole JJ, Cheng AK (2004) Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA 292:191–201

    Article  PubMed  CAS  Google Scholar 

  14. Huang JS, Rietschel P, Hadigan CM, Rosenthal DI, Grinspoon S (2001) Increased abdominal visceral fat is associated with reduced bone density in HIV-infected men with lipodystrophy. AIDS 15:975–982

    Article  PubMed  CAS  Google Scholar 

  15. Landonio S, Quirino T, Bonfanti P, Gabris A, Boccassini L, Gulisano C, Vulpio L, Ricci E, Carrabba M, Vigevani GM (2004) Osteopenia and osteoporosis in HIV+ patients, untreated or receiving HAART. Biomed Pharmacother 58:505–508

    Article  PubMed  CAS  Google Scholar 

  16. Nolan D, Upton R, McKinnon E, John M, James I, Adler B, Roff G, Vasikaran S, Mallal S (2001) Stable or increasing bone mineral density in HIV-infected patients treated with nelfinavir or indinavir. AIDS 15:1275–1280

    Article  PubMed  CAS  Google Scholar 

  17. Fakruddin JM, Laurence J (2003) HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor kappa B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-gamma/RANKL cross-talk. J Biol Chem 278:48251–48258

    Article  PubMed  CAS  Google Scholar 

  18. Jain RG, Lenhard JM (2002) Select HIV protease inhibitors alter bone and fat metabolism ex vivo. J Biol Chem 277:19247–19250

    Article  PubMed  CAS  Google Scholar 

  19. Malizia AP, Cotter E, Chew N, Powderly WG, Doran PP (2007) HIV protease inhibitors selectively induce gene expression alterations associated with reduced calcium deposition in primary human osteoblasts. AIDS Res Hum Retroviruses 23:243–250

    Article  PubMed  CAS  Google Scholar 

  20. Rivas P, Gorgolas M, Garcia-Delgado R, Diaz-Curiel M, Goyenechea A, Fernandez-Guerrero ML (2008) Evolution of bone mineral density in AIDS patients on treatment with zidovudine/lamivudine plus abacavir or lopinavir/ritonavir. HIV Med 9:89–95

    Article  PubMed  CAS  Google Scholar 

  21. Duvivier C, Kolta S, Assoumou L, Ghosn J, Rozenberg S, Murphy RL, Katlama C, Costagliola D (2009) Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS 27:817–824

    Article  Google Scholar 

  22. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  PubMed  CAS  Google Scholar 

  23. Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170:427–435

    Article  PubMed  CAS  Google Scholar 

  24. Modarresi R, Xiang Z, Yin M, Laurence J (2009) WNT/beta-catenin signaling is involved in regulation of osteoclast differentiation by human immunodeficiency virus protease inhibitor ritonavir: relationship to human immunodeficiency virus-linked bone mineral loss. Am J Pathol 174:123–135

    Article  PubMed  CAS  Google Scholar 

  25. Konishi M, Takahashi K, Yoshimoto E, Uno K, Kasahara K, Mikasa K (2005) Association between osteopenia/osteoporosis and the serum RANKL in HIV-infected patients. AIDS 19:1240–1241

    Article  PubMed  Google Scholar 

  26. Yin MT, McMahon DJ, Ferris DC, Zhang CA, Shu A, Staron R, Colon I, Laurence J, Dobkin JF, Hammer SM, Shane E (2010) Low bone mass and high bone turnover in postmenopausal human immunodeficiency virus-infected women. J Clin Endocrinol Metab 95:620–629

    Article  PubMed  CAS  Google Scholar 

  27. Husheem M, Nyman JK, Vaaraniemi J, Vaananen HK, Hentunen TA (2005) Characterization of circulating human osteoclast progenitors: development of in vitro resorption assay. Calcif Tissue Int 76:222–230

    Article  PubMed  CAS  Google Scholar 

  28. Henriksen K, Tanko LB, Qvist P, Delmas PD, Christiansen C, Karsdal MA (2007) Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int 18:681–685

    Article  PubMed  CAS  Google Scholar 

  29. Neale SD, Schulze E, Smith R, Athanasou NA (2002) The influence of serum cytokines and growth factors on osteoclast formation in Paget's disease. QJM 95:233–240

    Article  PubMed  CAS  Google Scholar 

  30. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM (2003) Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111:821–831

    PubMed  CAS  Google Scholar 

  31. Gregoretti MG, Bergui L, Aragno M, Cremona O, Marchisio PC, Caligaris-Cappio F (1995) Osteoclast precursors circulate in the peripheral blood of patients with aggressive multiple myeloma. Leukemia 9:1392–1397

    PubMed  CAS  Google Scholar 

  32. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, Blazar BR, Rodriguez B, Teixeira-Johnson L, Landay A, Martin JN, Hecht FM, Picker LJ, Lederman MM, Deeks SG, Douek DC (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371

    Article  PubMed  CAS  Google Scholar 

  33. Poli G (2004) T lymphocytes of HIV-positive individuals: preloaded guns in spite of highly active antiretroviral therapy? AIDS 18:327–328

    Article  PubMed  CAS  Google Scholar 

  34. Glass DA 2nd, Karsenty G (2006) Canonical Wnt signaling in osteoblasts is required for osteoclast differentiation. Ann NY Acad Sci 1068:117–130

    Article  PubMed  CAS  Google Scholar 

  35. Jain RG, Furfine ES, Pedneault L, White AJ, Lenhard JM (2001) Metabolic complications associated with antiretroviral therapy. Antivir Res 51:151–177

    Article  PubMed  CAS  Google Scholar 

  36. Wang MW, Wei S, Faccio R, Takeshita S, Tebas P, Powderly WG, Teitelbaum SL, Ross FP (2004) The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. J Clin Invest 114:206–213

    PubMed  CAS  Google Scholar 

  37. Neutzsky-Wulff AV, Karsdal MA, Henriksen K (2008) Characterization of the bone phenotype in ClC-7-deficient mice. Calcif Tissue Int 83:425–437

    Article  PubMed  CAS  Google Scholar 

  38. Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, Christiansen C, Bollerslev J, Karsdal MA, Henriksen K (2009) Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet 124:561–577

    Article  PubMed  CAS  Google Scholar 

  39. Alatalo SL, Ivaska KK, Waguespack SG, Econs MJ, Vaananen HK, Halleen JM (2004) Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type II autosomal dominant osteopetrosis). Clin Chem 50:883–890

    Article  PubMed  CAS  Google Scholar 

  40. Bauer DC, Sklarin PM, Stone KL, Black DM, Nevitt MC, Ensrud KE, Arnaud CD, Genant HK, Garnero P, Delmas PD, Lawaetz H, Cummings SR (1999) Biochemical markers of bone turnover and prediction of hip bone loss in older women: the study of osteoporotic fractures. J Bone Miner Res 14:1404–1410

    Article  PubMed  CAS  Google Scholar 

  41. Rogers A, Hannon RA, Eastell R (2000) Biochemical markers as predictors of rates of bone loss after menopause. J Bone Miner Res 15:1398–1404

    Article  PubMed  CAS  Google Scholar 

  42. Yin MT, McMahon DJ, Ferris DC, Shu A, Zhang CA, Laurence J, Shane E (2009) Bone loss in HIV+ postmenopausal women. In American Society for Bone and Mineral Research 31st Annual Meeting, Denver, 11–15 Sep 2009

Download references

Acknowledgements

We thank the staff and participants of Columbia University Medical Center and Bronx-Lebanon Hospital Center. This work was supported by National Institutes of Health Grants DK65511, AI065200 (ES), AI059884 (MY), and HL55646 (JL), the Angelo Donghia and Hagedorn Funds (JL), and the Thomas L. Kempner and Katheryn C. Patterson Foundation (ES).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, M.T., Modarresi, R., Shane, E. et al. Effects of HIV infection and antiretroviral therapy with ritonavir on induction of osteoclast-like cells in postmenopausal women. Osteoporos Int 22, 1459–1468 (2011). https://doi.org/10.1007/s00198-010-1363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1363-6

Keywords

Navigation