Skip to main content

Advertisement

Log in

Continued Interest and Controversy: Vitamin D in HIV

  • Complications of Antiretroviral Therapy (GA McComsey, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Vitamin D (VitD) deficiency is highly prevalent among HIV-infected individuals. Given the overlapping risk for several chronic disease and immunomodulatory outcomes from both long-standing HIV and VitD deficiency, there is great interest in clarifying the clinical role of VitD for this population.

Recent Findings

Recent studies have expanded our knowledge regarding the epidemiology and mechanisms of VitD deficiency-associated outcomes in the setting of HIV. Clinical trials focusing on VitD supplementation have demonstrated a positive impact on bone mineral density in subgroups of HIV-infected individuals initiating ART or on suppressive ART regimens; however, significant heterogeneity exists between studies and data are less consistent with other clinical outcomes.

Summary

Further research is needed to clarify uncertainly in several domains, including identifying patients at greatest risk for poor outcomes from VitD deficiency, standardizing definitions and measurement techniques, and better quantifying the benefits and risks of VitD supplementation across different demographic strata for skeletal and extra-skeletal outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Escota GV, Cross S, Powderly WG. Vitamin D and calcium abnormalities in the HIV-infected population. Endocrinol Metab Clin N Am. 2014;43(3):743–67. https://doi.org/10.1016/j.ecl.2014.05.005.

    Article  Google Scholar 

  2. Taylor CL, Sempos CT, Davis CD, Brannon PM. Vitamin D: moving forward to address emerging science. Nutrients. 2017;9(12) https://doi.org/10.3390/nu9121308.

  3. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81. https://doi.org/10.1056/NEJMra070553.

    Article  PubMed  CAS  Google Scholar 

  4. Guessous I. Role of vitamin D deficiency in extraskeletal complications: predictor of health outcome or marker of health status? Biomed Res Int. 2015;2015:563403. https://doi.org/10.1155/2015/563403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Coelho L, Cardoso SW, Luz PM, Hoffman RM, Mendonca L, Veloso VG, et al. Vitamin D3 supplementation in HIV infection: effectiveness and associations with antiretroviral therapy. Nutr J. 2015;14:81. https://doi.org/10.1186/s12937-015-0072-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Aurpibul L, Sricharoenchai S, Wittawatmongkol O, Sirisanthana V, Phongsamart W, Sudjaritruk T, et al. Vitamin D status in perinatally HIV-infected Thai children receiving antiretroviral therapy. J Pediatr Endocrinol Metab. 2016;29(4):407–11. https://doi.org/10.1515/jpem-2015-0203.

    Article  PubMed  CAS  Google Scholar 

  7. Adeyemi OM, Agniel D, French AL, Tien PC, Weber K, Glesby MJ, et al. Vitamin D deficiency in HIV-infected and HIV-uninfected women in the United States. J Acquir Immune Defic Syndr. 2011;57(3):197–204. https://doi.org/10.1097/QAI.0b013e31821ae418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bhan I. Vitamin d binding protein and bone health. Int J Endocrinol. 2014;2014:561214. https://doi.org/10.1155/2014/561214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chun RF. New perspectives on the vitamin D binding protein. Cell Biochem Funct. 2012;30(6):445–56. https://doi.org/10.1002/cbf.2835.

    Article  PubMed  CAS  Google Scholar 

  10. Holick MF. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18(2):153–65. https://doi.org/10.1007/s11154-017-9424-1.

    Article  PubMed  CAS  Google Scholar 

  11. Binkley N, Ramamurthy R, Krueger D. Low vitamin D status: definition, prevalence, consequences, and correction. Rheum Dis Clin N Am. 2012;38(1):45–59. https://doi.org/10.1016/j.rdc.2012.03.006.

    Article  Google Scholar 

  12. Powe CE, Ricciardi C, Berg AH, Erdenesanaa D, Collerone G, Ankers E, et al. Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J Bone Miner Res. 2011;26(7):1609–16. https://doi.org/10.1002/jbmr.387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bischoff-Ferrari HA, Orav EJ, Dawson-Hughes B. Effect of cholecalciferol plus calcium on falling in ambulatory older men and women: a 3-year randomized controlled trial. Arch Intern Med. 2006;166(4):424–30. https://doi.org/10.1001/archinte.166.4.424.

    Article  PubMed  CAS  Google Scholar 

  14. Cauley JA, Danielson ME, Boudreau R, Barbour KE, Horwitz MJ, Bauer DC, et al. Serum 25-hydroxyvitamin D and clinical fracture risk in a multiethnic cohort of women: the women’s health initiative (WHI). J Bone Miner Res. 2011;26(10):2378–88. https://doi.org/10.1002/jbmr.449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cauley JA, Parimi N, Ensrud KE, Bauer DC, Cawthon PM, Cummings SR, et al. Serum 25-hydroxyvitamin D and the risk of hip and nonspine fractures in older men. J Bone Miner Res. 2010;25(3):545–53. https://doi.org/10.1359/jbmr.090826.

    Article  PubMed  CAS  Google Scholar 

  16. Holvik K, Ahmed LA, Forsmo S, Gjesdal CG, Grimnes G, Samuelsen SO, et al. Low serum levels of 25-hydroxyvitamin D predict hip fracture in the elderly: a NOREPOS study. J Clin Endocrinol Metab. 2013;98(8):3341–50. https://doi.org/10.1210/jc.2013-1468.

    Article  PubMed  CAS  Google Scholar 

  17. •• Reid IR, Horne AM, Mihov B, Gamble GD, Al-Abuwsi F, Singh M et al. Effect of monthly high-dose vitamin D on bone density in community-dwelling older adults substudy of a randomized controlled trial. J Intern Med. 2017;282(5):452–60. https://doi.org/10.1111/joim.12651. This was a two-year substudy of a randomized controlled trial of older community-dwelling adults who received monthly vitamin D3 (100,000 IU) versus placebo, focused on examining the impact of supplementation on lumbar spine BMD, and exploring thresholds of baseline 25OHD levels for vitamin D effects on BMD.

  18. Snijder MB, van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P. Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab. 2006;91(8):2980–5. https://doi.org/10.1210/jc.2006-0510.

    Article  PubMed  CAS  Google Scholar 

  19. IOM. Dietary reference intakes for calcium and vitamin D. Committee to Review Dietary Reference Intakes for Calcium and Vitamin D: Institute of Medicine2011.

  20. Valcour A, Blocki F, Hawkins DM, Rao SD. Effects of age and serum 25-OH-vitamin D on serum parathyroid hormone levels. J Clin Endocrinol Metab. 2012;97(11):3989–95. https://doi.org/10.1210/jc.2012-2276.

    Article  PubMed  CAS  Google Scholar 

  21. Holick MF, Siris ES, Binkley N, Beard MK, Khan A, Katzer JT, et al. Prevalence of vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab. 2005;90(6):3215–24. https://doi.org/10.1210/jc.2004-2364.

    Article  PubMed  CAS  Google Scholar 

  22. Murad MH, Elamin KB, Abu Elnour NO, Elamin MB, Alkatib AA, Fatourechi MM, et al. Clinical review: the effect of vitamin D on falls: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(10):2997–3006. https://doi.org/10.1210/jc.2011-1193.

    Article  PubMed  CAS  Google Scholar 

  23. Cervero M, Agud JL, Garcia-Lacalle C, Alcazar V, Torres R, Jusdado JJ, et al. Prevalence of vitamin D deficiency and its related risk factor in a Spanish cohort of adult HIV-infected patients: effects of antiretroviral therapy. AIDS Res Hum Retrovir. 2012;28(9):963–71. https://doi.org/10.1089/AID.2011.0244.

    Article  PubMed  CAS  Google Scholar 

  24. • Klassen KM, Fairley CK, Kimlin MG, Hocking J, Kelsall L, Ebeling PR. Vitamin D deficiency is common in HIV-infected southern Australian adults. Antivir Ther. 2016;21(2):117–25. https://doi.org/10.3851/IMP2983. This large cross-sectional study compared 25OHD levels among HIV-infected and uninfected indiviuals from Melbourne to examine the relationship between HIV status and vitamin D deficiency.

  25. • Jao J, Freimanis L, Mussi-Pinhata MM, Cohen RA, Monteiro JP, Cruz ML et al. Low vitamin D status among pregnant Latin American and Caribbean women with HIV Infection. Int J Gynaecol Obstet. 2015;130(1):54–8. https://doi.org/10.1016/j.ijgo.2015.01.017. This multi-center cross-sectional study evaluated prevalance and predictors of low vitamin D status among pregnant women with HIV from 17 sites in Latin America and the Caribbean.

  26. • Atteritano M, Mirarchi L, Venanzi-Rullo E, Santoro D, Iaria C, Catalano A et al. Vitamin D status and the relationship with bone fragility fractures in HIV-infected patients: a case control study. Int J Mol Sci. 2018;19(1). https://doi.org/10.3390/ijms19010119. This was a study evaluating prevalence of vertebral fractures and association with vitamin D status and ultrasound-based bone mineral density measures among 100 HIV-infected and 100 HIV-uninfected controls.

  27. Schtscherbyna A, Gouveia C, Pinheiro MF, Luiz RR, Farias ML, Machado ES. Vitamin D status in a Brazilian cohort of adolescents and young adults with perinatally acquired human immunodeficiency virus infection. Mem Inst Oswaldo Cruz. 2016;111(2):128–33. https://doi.org/10.1590/0074-02760150403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hileman CO, Overton ET, McComsey GA. Vitamin D and bone loss in HIV. Curr Opin HIV AIDS. 2016;11(3):277–84. https://doi.org/10.1097/COH.0000000000000272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hidron AI, Hill B, Guest JL, Rimland D. Risk factors for vitamin D deficiency among veterans with and without HIV infection. PLoS One. 2015;10(4):e0124168. https://doi.org/10.1371/journal.pone.0124168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Dao CN, Patel P, Overton ET, Rhame F, Pals SL, Johnson C, et al. Low vitamin D among HIV-infected adults: prevalence of and risk factors for low vitamin D Levels in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. Clin Infect Dis. 2011;52(3):396–405. https://doi.org/10.1093/cid/ciq158.

    Article  PubMed  CAS  Google Scholar 

  31. Gois PHF, Ferreira D, Olenski S, Seguro AC. Vitamin D and infectious diseases: simple bystander or contributing factor? Nutrients. 2017;9(7). https://doi.org/10.3390/nu9070651.

  32. Mansueto P, Seidita A, Vitale G, Gangemi S, Iaria C, Cascio A. Vitamin D deficiency in HIV infection: not only a bone disorder. Biomed Res Int. 2015;2015:735615. https://doi.org/10.1155/2015/735615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mehta S, Giovannucci E, Mugusi FM, Spiegelman D, Aboud S, Hertzmark E, et al. Vitamin D status of HIV-infected women and its association with HIV disease progression, anemia, and mortality. PLoS One. 2010;5(1):e8770. https://doi.org/10.1371/journal.pone.0008770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mehta S, Mugusi FM, Spiegelman D, Villamor E, Finkelstein JL, Hertzmark E, et al. Vitamin D status and its association with morbidity including wasting and opportunistic illnesses in HIV-infected women in Tanzania. AIDS Patient Care STDs. 2011;25(10):579–85. https://doi.org/10.1089/apc.2011.0182.

    Article  PubMed  PubMed Central  Google Scholar 

  35. • Sudfeld CR, Duggan C, Aboud S, Kupka R, Manji KP, Kisenge R et al. Vitamin D status is associated with mortality, morbidity, and growth failure among a prospective cohort of HIV-infected and HIV-exposed Tanzanian infants. J Nutr. 2015;145(1):121–7. https://doi.org/10.3945/jn.114.201566. This prospective cohort study measured the association between vitamin D status and mortality, morbidity and growth during the first two years of life among HIV-infected and HIV-exposed infants in Tanzania.

  36. Sudfeld CR, Giovannucci EL, Isanaka S, Aboud S, Mugusi FM, Wang M, et al. Vitamin D status and incidence of pulmonary tuberculosis, opportunistic infections, and wasting among HIV-infected Tanzanian adults initiating antiretroviral therapy. J Infect Dis. 2013;207(3):378–85. https://doi.org/10.1093/infdis/jis693.

    Article  PubMed  CAS  Google Scholar 

  37. • Nylen H, Habtewold A, Makonnen E, Yimer G, Bertilsson L, Burhenne J et al. Prevalence and risk factors for efavirenz-based antiretroviral treatment-associated severe vitamin D deficiency: a prospective cohort study. Medicine (Baltimore). 2016;95(34):e4631. https://doi.org/10.1097/MD.0000000000004631. This was a prospective, comparative, observational study of HIV-TB co-infected versus HIV-monoinfected patients treated with efavirenz-based combination ART, focused on evaluating the impact of rifampin-based TB on efavienz-associated vitamin D deficiency over 48 weeks.

  38. Viard JP, Souberbielle JC, Kirk O, Reekie J, Knysz B, Losso M, et al. Vitamin D and clinical disease progression in HIV infection: results from the EuroSIDA study. AIDS. 2011;25(10):1305–15. https://doi.org/10.1097/QAD.0b013e328347f6f7.

    Article  PubMed  CAS  Google Scholar 

  39. Theodorou M, Serste T, Van Gossum M, Dewit S. Factors associated with vitamin D deficiency in a population of 2044 HIV-infected patients. Clin Nutr. 2014;33(2):274–9. https://doi.org/10.1016/j.clnu.2013.04.018.

    Article  PubMed  CAS  Google Scholar 

  40. Shiau S, Broun EC, Arpadi SM, Yin MT. Incident fractures in HIV-infected individuals: a systematic review and meta-analysis. AIDS. 2013;27(12):1949–57. https://doi.org/10.1097/QAD.0b013e328361d241.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008;93(9):3499–504. https://doi.org/10.1210/jc.2008-0828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. • Dave JA, Cohen K, Micklesfield LK, Maartens G, Levitt NS. Antiretroviral therapy, especially efavirenz, is associated with low bone mineral density in HIV-infected South Africans. PLoS One. 2015;10(12):e0144286. https://doi.org/10.1371/journal.pone.0144286. This was a cross-sectional study evaluating BMD and 25OHD levels in ART-treated versus ART-naïve HIV-positive adults in South Africa, focused on identifying factors associated with lower BMD in this population.

  43. Stellbrink HJ, Orkin C, Arribas JR, Compston J, Gerstoft J, Van Wijngaerden E, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis. 2010;51(8):963–72. https://doi.org/10.1086/656417.

    Article  PubMed  Google Scholar 

  44. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis. 2011;203(12):1791–801. https://doi.org/10.1093/infdis/jir188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr. 2009;51(5):554–61. https://doi.org/10.1097/QAI.0b013e3181adce44.

    Article  PubMed  CAS  Google Scholar 

  46. •• Tinago W, Cotter AG, Sabin CA, Macken A, Kavanagh E, Brady JJ et al. Predictors of longitudinal change in bone mineral density in a cohort of HIV-positive and negative patients. Aids. 2017;31(5):643-52. https://doi.org/10.1097/qad.0000000000001372. This was a prospective three-year cohort study examining longitudinal rate of decline and predictors of decline among HIV-positive and HIV-negative individuals.

  47. •• Gonciulea A, Wang R, Althoff KN, Palella FJ, Lake J, Kingsley LA et al. An increased rate of fracture occurs a decade earlier in HIV+ compared with HIV− men. AIDS. 2017;31(10):1435–43. https://doi.org/10.1097/QAD.0000000000001493. This was an analysis of data from the Multicenter AIDS Cohort Study, a large prospective multi-center cohort study of HIV-positive and HIV-negative men to determine predictors of incident fracture.

  48. Sharma A, Shi Q, Hoover DR, Anastos K, Tien PC, Young MA, et al. Increased fracture incidence in middle-aged HIV-infected and HIV-uninfected women: updated results from the Women’s Interagency HIV Study. J Acquir Immune Defic Syndr. 2015;70(1):54–61. https://doi.org/10.1097/qai.0000000000000674.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yin MT, Kendall MA, Wu X, Tassiopoulos K, Hochberg M, Huang JS, et al. Fractures after antiretroviral initiation. AIDS. 2012;26(17):2175–84. https://doi.org/10.1097/QAD.0b013e328359a8ca.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. •• Erlandson KM, Lake JE, Sim M, Falutz J, Prado CM, Domingues da Silva AR et al. Bone mineral density declines twice as quickly among HIV-infected women compared to men. J Acquir Immune Defic Syndr. 2017. https://doi.org/10.1097/QAI.0000000000001591. This was a large prospective cohort study of HIV-infected Italian men and women examining long-term changes (up to 10 years of follow-up, median 4.6 years) and risk factors for decline in BMD after ART initiation.

  51. • Sudjaritruk T, Bunupuradah T, Aurpibul L, Kosalaraksa P, Kurniati N, Prasitsuebsai W et al. Hypovitaminosis D and hyperparathyroidism: effects on bone turnover and bone mineral density among perinatally HIV-infected adolescents. AIDS. 2016;30(7):1059–67. https://doi.org/10.1097/QAD.0000000000001032. This was a multi-center, cross-sectional study evaluating bone mineral density, bone turnover, hypovitaminosis D and hyperparathyroidism among perinatally HIV-infected adolescents in a tropical region (Thailand and Indonesia).

  52. • Jacobson DL, Stephensen CB, Miller TL, Patel K, Chen JS, Van Dyke RB et al. Associations of low Vitamin D and elevated parathyroid hormone concentrations with bone mineral density in perinatally HIV-infected children. J Acquir Immune Defic Syndr. 2017;76(1):33–42. https://doi.org/10.1097/QAI.0000000000001467. This was a cross-sectional analysis of data from the Adolescent Master Protocol of the Pediatric HIV/AIDS Cohort Study focused on comparing bone mineral density, 25OHD and parathyroid hormone levels among perinatally HV-infected children versus perinatally HIV exposed uninfected children.

  53. • Eckard AR, Thierry-Palmer M, Silvestrov N, Rosebush JC, O'Riordan MA, Daniels JE et al. Effects of cholecalciferol supplementation on serum and urinary vitamin D metabolites and binding protein in HIV-infected youth. J Steroid Biochem Mol Biol. 2017;168:38–48. https://doi.org/10.1016/j.jsbmb.2017.01.018. This randomized controlled trial evaluated changes in vitamin D metabolites and binding protein among HIV-infected versus HIV-uninfected youth after 6 months of supplementation with monthly medium- (60,000IU), or high- (120,000IU) dose vitamin D3, compared with low-dose (18,000 IU) supplementation.

  54. Lerma-Chippirraz E, Guerri-Fernandez R, Villar Garcia J, Gonzalez Mena A, Guelar Grinberg A, Montero MM, et al. Validation protocol of vitamin D supplementation in patients with HIV-Infection. AIDS Research and Treatment. 2016;2016:5120831. https://doi.org/10.1155/2016/5120831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lake JE, Hoffman RM, Tseng CH, Wilhalme HM, Adams JS, Currier JS. Success of standard dose vitamin D supplementation in treated human immunodeficiency virus infection. Open Forum Infect Dis. 2015;2(2):ofv068. https://doi.org/10.1093/ofid/ofv068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. •• Overton ET, Chan ES, Brown TT, Tebas P, McComsey GA, Melbourne KM et al. Vitamin D and calcium attenuate bone loss with antiretroviral therapy initiation: a randomized trial. Ann Intern Med. 2015;162(12):815–24. https://doi.org/10.7326/M14-1409. This is an analysis of data from the ACTG A5280 Study of high-dose vitamin D3 plus calcium supplementation versus placebo, focused on the impact of supplementation on bone mineral density and biomarkers of bone metabolism and inflammation over 48 weeks after ART initiation.

  57. • Eckard AR, O'Riordan MA, Rosebush JC, Ruff JH, Chahroudi A, Labbato D et al. Effects of vitamin D supplementation on bone mineral density and bone markers in HIV-infected youth. J Acquir Immune Defic Syndr. 2017;76(5):539–46. https://doi.org/10.1097/qai.0000000000001545. This randomized controlled trial evaluated changes in BMD and bone turnover markers among HIV-infected youth with vitamin D insufficiency after 12 months of supplementation with monthly medium- (60,000IU), or high- (120,000IU) dose vitamin D3, compared with a standard/control dose (18,000 IU).

  58. Banon S, Rosillo M, Gomez A, Perez-Elias MJ, Moreno S, Casado JL. Effect of a monthly dose of calcidiol in improving vitamin D deficiency and secondary hyperparathyroidism in HIV-infected patients. Endocrine. 2015;49(2):528–37. https://doi.org/10.1007/s12020-014-0489-2.

    Article  PubMed  CAS  Google Scholar 

  59. •• Havens PL, Stephensen CB, Van Loan MD, Schuster GU, Woodhouse LR, Flynn PM et al. Vitamin D3 supplementation increases spine bone mineral density in adolescents and young adults with human immunodeficiency virus infection being treated with tenofovir disoproxil fumarate: a randomized, placebo-controlled trial. Clin Infect Dis. 2018;66(2):220–8. https://doi.org/10.1093/cid/cix753. This was a randomized, double-blind, placebo-controlled trial evaluating the impact of directly observed vitamin D3 supplementation (50,000IU every 4 weeks) versus placebo among HIV-positive youth initiating tenofovir-based ART on percent change in bone mineral density at the lumbar spine.

  60. Rovner AJ, Stallings VA, Rutstein R, Schall JI, Leonard MB, Zemel BS. Effect of high-dose cholecalciferol (vitamin D3) on bone and body composition in children and young adults with HIV infection: a randomized, double-blind, placebo-controlled trial. Osteoporos Int. 2017;28(1):201–9. https://doi.org/10.1007/s00198-016-3826-x.

    Article  PubMed  CAS  Google Scholar 

  61. Bolland MJ, Grey AB, Horne AM, Briggs SE, Thomas MG, Ellis-Pegler RB, et al. Annual zoledronate increases bone density in highly active antiretroviral therapy-treated human immunodeficiency virus-infected men: a randomized controlled trial. J Clin Endocrinol Metab. 2007;92(4):1283–8. https://doi.org/10.1210/jc.2006-2216.

    Article  PubMed  CAS  Google Scholar 

  62. Guaraldi G, Orlando G, Madeddu G, Vescini F, Ventura P, Campostrini S, et al. Alendronate reduces bone resorption in HIV-associated osteopenia/osteoporosis. HIV clinical trials. 2004;5(5):269–77. https://doi.org/10.1310/md8v-5dlg-en3t-brhx.

    Article  PubMed  CAS  Google Scholar 

  63. Huang J, Meixner L, Fernandez S, McCutchan JA. A double-blinded, randomized controlled trial of zoledronate therapy for HIV-associated osteopenia and osteoporosis. AIDS. 2009;23(1):51–7. https://doi.org/10.1097/QAD.0b013e32831c8adc.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. McComsey GA, Kendall MA, Tebas P, Swindells S, Hogg E, Alston-Smith B, et al. Alendronate with calcium and vitamin D supplementation is safe and effective for the treatment of decreased bone mineral density in HIV. AIDS. 2007;21(18):2473–82. https://doi.org/10.1097/QAD.0b013e3282ef961d.

    Article  PubMed  CAS  Google Scholar 

  65. Mondy K, Powderly WG, Claxton SA, Yarasheski KH, Royal M, Stoneman JS, et al. Alendronate, vitamin D, and calcium for the treatment of osteopenia/osteoporosis associated with HIV infection. J Acquir Immune Defic Syndr. 2005;38(4):426–31.

    Article  PubMed  CAS  Google Scholar 

  66. Negredo E, Bonjoch A, Perez-Alvarez N, Ornelas A, Puig J, Herrero C, et al. Comparison of two different strategies of treatment with zoledronate in HIV-infected patients with low bone mineral density: single dose versus two doses in 2 years. HIV Med. 2015;16(7):441–8. https://doi.org/10.1111/hiv.12260.

    Article  PubMed  CAS  Google Scholar 

  67. Rozenberg S, Lanoy E, Bentata M, Viard JP, Valantin MA, Missy P, et al. Effect of alendronate on HIV-associated osteoporosis: a randomized, double-blind, placebo-controlled, 96-week trial (ANRS 120). AIDS Res Hum Retrovir. 2012;28(9):972–80. https://doi.org/10.1089/aid.2011.0224.

    Article  PubMed  CAS  Google Scholar 

  68. Dhaliwal R, Aloia JF. Effect of vitamin D on falls and physical performance. Endocrinol Metab Clin N Am. 2017;46(4):919–33. https://doi.org/10.1016/j.ecl.2017.07.004.

    Article  Google Scholar 

  69. Koundourakis NE, Avgoustinaki PD, Malliaraki N, Margioris AN. Muscular effects of vitamin D in young athletes and non-athletes and in the elderly. Hormones (Athens, Greece). 2016;15(4):471–88. https://doi.org/10.14310/horm.2002.1705.

    Article  Google Scholar 

  70. • Brown JC, Schall JI, Rutstein RM, Leonard MB, Zemel BS, Stallings VA. The impact of vitamin D3 supplementation on muscle function among HIV-infected children and young adults: a randomized controlled trial. J Musculoskelet Neuronal Interact. 2015;15(2):145–53. This study analyzed data from a small randomized controlled trial of 12 months of daily vitamin D3 supplementation (7000IU) versus placebo and uniquely examines the impact of supplementation on neuromuscular motor skills and muscle function.

  71. Cozzolino M, Vidal M, Arcidiacono MV, Tebas P, Yarasheski KE, Dusso AS. HIV-protease inhibitors impair vitamin D bioactivation to 1,25-dihydroxyvitamin D. AIDS. 2003;17(4):513–20. https://doi.org/10.1097/01.aids.0000050817.06065.f8.

    Article  PubMed  CAS  Google Scholar 

  72. Eagling VA, Back DJ, Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol. 1997;44(2):190–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Duan SX, Fogelman SM, et al. Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol. 1998;38(2):106–11.

    Article  Google Scholar 

  74. •• Avihingsanon A, Kerr SJ, Ramautarsing RA, Praditpornsilpa K, Sophonphan J, Ubolyam S et al. The association of gender, age, efavirenz use, and hypovitaminosis d among hiv-infected adults living in the tropics. AIDS Res Hum Retroviruses. 2016;32(4):317–24. https://doi.org/10.1089/AID.2015.0069. This was a cross-sectional study evaluating levels of hypovitaminosis D among patients with HIV in a tropical region (Thailand) and factor associated with low levels of 25OHD.

  75. Gyllensten K, Josephson F, Lidman K, Saaf M. Severe vitamin D deficiency diagnosed after introduction of antiretroviral therapy including efavirenz in a patient living at latitude 59 degrees N. AIDS. 2006;20(14):1906–7. https://doi.org/10.1097/01.aids.0000244216.08327.39.

    Article  PubMed  Google Scholar 

  76. Wang Z, Schuetz EG, Xu Y, Thummel KE. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J Steroid Biochem Mol Biol. 2013;136:54–8. https://doi.org/10.1016/j.jsbmb.2012.09.012.

    Article  PubMed  CAS  Google Scholar 

  77. Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther. 2003;306(1):287–300. https://doi.org/10.1124/jpet.103.049601.

    Article  PubMed  CAS  Google Scholar 

  78. Wyen C, Hendra H, Siccardi M, Platten M, Jaeger H, Harrer T, et al. Cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR) polymorphisms are associated with early discontinuation of efavirenz-containing regimens. J Antimicrob Chemother. 2011;66(9):2092–8. https://doi.org/10.1093/jac/dkr272.

    Article  PubMed  CAS  Google Scholar 

  79. Swart M, Skelton M, Ren Y, Smith P, Takuva S, Dandara C. High predictive value of CYP2B6 SNPs for steady-state plasma efavirenz levels in South African HIV/AIDS patients. Pharmacogenet Genomics. 2013;23(8):415–27. https://doi.org/10.1097/FPC.0b013e328363176f.

    Article  PubMed  CAS  Google Scholar 

  80. Damronglerd P, Sukasem C, Thipmontree W, Puangpetch A, Kiertiburanakul S. A pharmacogenomic prospective randomized controlled trial of CYP2B6 polymorphisms and efavirenz dose adjustment among HIV-infected Thai patients: a pilot study. Pharmgenomics Pers Med. 2015;8:155–62. https://doi.org/10.2147/PGPM.S86446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sukasem C, Manosuthi W, Koomdee N, Santon S, Jantararoungtong T, Prommas S, et al. Low level of efavirenz in HIV-1-infected Thai adults is associated with the CYP2B6 polymorphism. Infection. 2014;42(3):469–74. https://doi.org/10.1007/s15010-013-0560-6.

    Article  PubMed  CAS  Google Scholar 

  82. Steenhoff AP, Schall JI, Samuel J, Seme B, Marape M, Ratshaa B, et al. Vitamin D(3)supplementation in Batswana children and adults with HIV: a pilot double blind randomized controlled trial. PLoS One. 2015;10(2):e0117123. https://doi.org/10.1371/journal.pone.0117123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wohl DA, Orkin C, Doroana M, Pilotto JH, Sungkanuparph S, Yeni P, et al. Change in vitamin D levels and risk of severe vitamin D deficiency over 48 weeks among HIV-1-infected, treatment-naive adults receiving rilpivirine or efavirenz in a Phase III trial (ECHO). Antivir Ther. 2014;19(2):191–200. https://doi.org/10.3851/imp2721.

    Article  PubMed  CAS  Google Scholar 

  84. Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P. Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS. 2012;26(7):825–31. https://doi.org/10.1097/QAD.0b013e32835192ae.

    Article  PubMed  CAS  Google Scholar 

  85. Hamzah L, Samarawickrama A, Campbell L, Pope M, Burling K, Fisher M, et al. Effects of renal tubular dysfunction on bone in tenofovir-exposed HIV-positive patients. AIDS. 2015;29(14):1785–92. https://doi.org/10.1097/QAD.0000000000000760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hamzah L, Jose S, Booth JW, Hegazi A, Rayment M, Bailey A, et al. Treatment-limiting renal tubulopathy in patients treated with tenofovir disoproxil fumarate. J Inf Secur. 2017;74(5):492–500. https://doi.org/10.1016/j.jinf.2017.01.010.

    Article  CAS  Google Scholar 

  87. Grigsby IF, Pham L, Gopalakrishnan R, Mansky LM, Mansky KC. Downregulation of Gnas, Got2 and Snord32a following tenofovir exposure of primary osteoclasts. Biochem Biophys Res Commun. 2010;391(3):1324–9. https://doi.org/10.1016/j.bbrc.2009.12.039.

    Article  PubMed  CAS  Google Scholar 

  88. Grigsby IF, Pham L, Mansky LM, Gopalakrishnan R, Carlson AE, Mansky KC. Tenofovir treatment of primary osteoblasts alters gene expression profiles: implications for bone mineral density loss. Biochem Biophys Res Commun. 2010;394(1):48–53. https://doi.org/10.1016/j.bbrc.2010.02.080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Rosenvinge MM, Gedela K, Copas AJ, Wilkinson A, Sheehy CA, Bano G, et al. Tenofovir-linked hyperparathyroidism is independently associated with the presence of vitamin D deficiency. J Acquir Immune Defic Syndr. 2010;54(5):496–9.

    Article  PubMed  CAS  Google Scholar 

  90. Foca E, Motta D, Borderi M, Gotti D, Albini L, Calabresi A, et al. Prospective evaluation of bone markers, parathormone and 1,25-(OH)(2) vitamin D in HIV-positive patients after the initiation of tenofovir/emtricitabine with atazanavir/ritonavir or efavirenz. BMC Infect Dis. 2012;12:38. https://doi.org/10.1186/1471-2334-12-38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Havens PL, Stephensen CB, Hazra R, Flynn PM, Wilson CM, Rutledge B, et al. Vitamin D3 decreases parathyroid hormone in HIV-infected youth being treated with tenofovir: a randomized, placebo-controlled trial. Clin Infect Dis. 2012;54(7):1013–25. https://doi.org/10.1093/cid/cir968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Yousefzadeh P, Shapses SA, Wang X. Vitamin D binding protein impact on 25-hydroxyvitamin D levels under different physiologic and pathologic conditions. Int J Endocrinol. 2014;2014:981581. https://doi.org/10.1155/2014/981581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Stokes CS, Volmer DA, Grunhage F, Lammert F. Vitamin D in chronic liver disease. Liver Int. 2013;33(3):338–52. https://doi.org/10.1111/liv.12106.

    Article  PubMed  CAS  Google Scholar 

  94. Moller UK, Streym S, Jensen LT, Mosekilde L, Schoenmakers I, Nigdikar S, et al. Increased plasma concentrations of vitamin D metabolites and vitamin D binding protein in women using hormonal contraceptives: a cross-sectional study. Nutrients. 2013;5(9):3470–80. https://doi.org/10.3390/nu5093470.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Denburg MR, Kalkwarf HJ, de Boer IH, Hewison M, Shults J, Zemel BS, et al. Vitamin D bioavailability and catabolism in pediatric chronic kidney disease. Pediatr Nephrol. 2013;28(9):1843–53. https://doi.org/10.1007/s00467-013-2493-9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jeng L, Yamshchikov AV, Judd SE, Blumberg HM, Martin GS, Ziegler TR, et al. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J Transl Med. 2009;7:28. https://doi.org/10.1186/1479-5876-7-28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Madden K, Feldman HA, Chun RF, Smith EM, Sullivan RM, Agan AA, et al. Critically ill children have low vitamin D-binding protein, influencing bioavailability of vitamin D. Ann Am Thorac Soc. 2015;12(11):1654–61. https://doi.org/10.1513/AnnalsATS.201503-160OC.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Waldron JL, Ashby HL, Cornes MP, Bechervaise J, Razavi C, Thomas OL, et al. Vitamin D: a negative acute phase reactant. J Clin Pathol. 2013;66(7):620–2. https://doi.org/10.1136/jclinpath-2012-201301.

    Article  PubMed  CAS  Google Scholar 

  99. Havens PL, Kiser JJ, Stephensen CB, Hazra R, Flynn PM, Wilson CM, et al. Association of higher plasma vitamin D binding protein and lower free calcitriol levels with tenofovir disoproxil fumarate use and plasma and intracellular tenofovir pharmacokinetics: cause of a functional vitamin D deficiency? Antimicrob Agents Chemother. 2013;57(11):5619–28. https://doi.org/10.1128/AAC.01096-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. • Hsieh E, Fraenkel L, Han Y, Xia W, Insogna KL, Yin MT et al. Longitudinal increase in vitamin D binding protein levels after initiation of tenofovir/lamivudine/efavirenz among individuals with HIV. AIDS. 2016;30(12):1935–42. https://doi.org/10.1097/QAD.0000000000001131. This was an analysis of plasma samples collected from a multi-center clinical trial evaluating change in vitamin D binding protein levels over 48 weeks in relation to levels of markers of bone turnover, 25OHD and parathyroid hormone after initiation of tenofovir-based ART.

  101. Yin MT, Chan ES, Brown TT, Tebas P, GA MC, Melbourne KM, et al. Racial differences in calculated bioavailable vitamin D with vitamin D/calcium supplementation. AIDS. 2017;31(17):2337–44. https://doi.org/10.1097/QAD.0000000000001621. This was a secondary analysis of data from the ACTG A5280 randomized control trial of vitamin D3 plus calcium suppementation in HIV-infected patients initiating tenofovir-based ART that compared changes in bioavailable 25OHD among black versus non-black patients over 48 weeks and correlation of this parameter with bone outcomes.

    Article  PubMed  CAS  Google Scholar 

  102. • Hamzah L, Tiraboschi JM, Iveson H, Toby M, Mant C, Cason J et al. Effects on vitamin D, bone and the kidney of switching from fixed-dose tenofovir disoproxil fumarate/emtricitabine/efavirenz to darunavir/ritonavir monotherapy: a randomized, controlled trial (MIDAS). Antivir Ther. 2016;21(4):287–96. https://doi.org/10.3851/IMP3000. This study of virally suppressed patients with HIV evaluated the impact of switching from fixed-dose TDF/FTC/EFV to DRV/r monotherapy on 25OHD levels after 48 weeks, as well as BMD, bone turnover markers and renal tubular function.

  103. Mingione A, Maruca K, Chiappori F, Pivari F, Brasacchio C, Quirino T, et al. High parathyroid hormone concentration in tenofovir-treated patients are due to inhibition of calcium-sensing receptor activity. Biomed Pharmacother. 2018;97:969–74. https://doi.org/10.1016/j.biopha.2017.11.037.

    Article  PubMed  CAS  Google Scholar 

  104. Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science (New York, NY). 1983;221(4616):1181–3.

  105. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–8. https://doi.org/10.1006/abbi.1999.1605.

    Article  PubMed  CAS  Google Scholar 

  106. Vanherwegen AS, Gysemans C, Mathieu C. Regulation of immune function by vitamin D and its use in diseases of immunity. Endocrinol Metab Clin N Am. 2017;46(4):1061–94. https://doi.org/10.1016/j.ecl.2017.07.010.

    Article  Google Scholar 

  107. Salvatore M, Garcia-Sastre A, Ruchala P, Lehrer RI, Chang T, Klotman ME. alpha-Defensin inhibits influenza virus replication by cell-mediated mechanism(s). J Infect Dis. 2007;196(6):835–43. https://doi.org/10.1086/521027.

    Article  PubMed  CAS  Google Scholar 

  108. Gombart AF. The vitamin D—antimicrobial peptide pathway and its role in protection against infection. Future Microbiol. 2009;4(9):1151–65. https://doi.org/10.2217/fmb.09.87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19(9):1067–77. https://doi.org/10.1096/fj.04-3284com.

    Article  PubMed  CAS  Google Scholar 

  110. Mastaglia S, Watson D, Bello N, Fridman V, Stecher D, Oliveri B. Vitamin D levels and their impact on mineral metabolism in HIV infected patients: an exploratory study. Clin Cases Miner Bone Metab. 2017;14(1):18–22. https://doi.org/10.11138/ccmbm/2017.14.1.018.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Havers F, Smeaton L, Gupte N, Detrick B, Bollinger RC, Hakim J, et al. 25-Hydroxyvitamin D insufficiency and deficiency is associated with HIV disease progression and virological failure post-antiretroviral therapy initiation in diverse multinational settings. J Infect Dis. 2014;210(2):244–53. https://doi.org/10.1093/infdis/jiu259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sudfeld CR, Wang M, Aboud S, Giovannucci EL, Mugusi FM, Fawzi WW. Vitamin D and HIV progression among Tanzanian adults initiating antiretroviral therapy. PLoS One. 2012;7(6):e40036. https://doi.org/10.1371/journal.pone.0040036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Visser ME, Durao S, Sinclair D, Irlam JH, Siegfried N. Micronutrient supplementation in adults with HIV infection. The Cochrane Database of Systematic Reviews. 2017;5:Cd003650. https://doi.org/10.1002/14651858.CD003650.pub4.

    Article  PubMed  Google Scholar 

  114. • Tenforde MW, Yadav A, Dowdy DW, Gupte N, Shivakoti R, Yang WT et al. Vitamin A and D deficiencies associated with incident tuberculosis in HIV-infected patients initiating antiretroviral therapy in multinational case-cohort study. J Acquir Immune Defic Syndr. 2017;75(3):e71-e9. https://doi.org/10.1097/qai.0000000000001308. This was a case-cohort study nested within a randomized trial comparing three ART regimens in HIV treatment-naïve adults from 9 countries, that evaluated the impact of micronutrient deficiencies (particularly vitamin A and D deficiency) on risk for incident TB over 96 weeks.

  115. Dadabhai AS, Saberi B, Lobner K, Shinohara RT, Mullin GE. Influence of vitamin D on liver fibrosis in chronic hepatitis C: a systematic review and meta-analysis of the pooled clinical trials data. World J Hepatol. 2017;9(5):278–87. https://doi.org/10.4254/wjh.v9.i5.278.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Flauzino T, Simao ANC, de Almeida ERD, Morimoto HK, Oliveira SR, Alfieri DF, et al. Association between vitamin D status, oxidative stress biomarkers and viral load in human immunodeficiency virus type 1 infection. Curr HIV Res. 2017;15(5):336–44. https://doi.org/10.2174/1570162x15666171005170227.

    Article  PubMed  CAS  Google Scholar 

  117. Manion M, Hullsiek KH, Wilson EMP, Rhame F, Kojic E, Gibson D, et al. Vitamin D deficiency is associated with IL-6 levels and monocyte activation in HIV-infected persons. PLoS One. 2017;12(5):e0175517. https://doi.org/10.1371/journal.pone.0175517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Fabre-Mersseman V, Tubiana R, Papagno L, Bayard C, Briceno O, Fastenackels S, et al. Vitamin D supplementation is associated with reduced immune activation levels in HIV-1-infected patients on suppressive antiretroviral therapy. AIDS. 2014;28(18):2677–82. https://doi.org/10.1097/qad.0000000000000472.

    Article  PubMed  CAS  Google Scholar 

  119. • Lachmann R, Bevan MA, Kim S, Patel N, Hawrylowicz C, Vyakarnam A et al. A comparative phase 1 clinical trial to identify anti-infective mechanisms of vitamin D in people with HIV infection. Aids. 2015;29(10):1127–35. https://doi.org/10.1097/qad.0000000000000666. This was a pilot study among HIV-infected patients (ART-experienced vs. ART-naïve) compared with healthy controls, exploring the ability of a single dose of 200,000 IU cholecalciferol to modulate T cell functions relevant for antiviral immunity.

  120. Stallings VA, Schall JI, Hediger ML, Zemel BS, Tuluc F, Dougherty KA, et al. High-dose vitamin D3 supplementation in children and young adults with HIV: a randomized, placebo-controlled trial. Pediatr Infect Dis J. 2015;34(2):e32–40. https://doi.org/10.1097/inf.0000000000000483.

    Article  PubMed  PubMed Central  Google Scholar 

  121. • Eckard AR, O'Riordan MA, Rosebush JC, Lee ST, Habib JG, Ruff JH et al. Vitamin D supplementation decreases immune activation and exhaustion in HIV-1-infected youth. Antivir Ther. 2017. https://doi.org/10.3851/IMP3199. This randomized controlled trial evaluated changes in immune activation and exhaustion markers among virologically suppressed, HIV-infected youth with vitamin D insufficiency after 12 months of supplementation with monthly medium- (60,000IU), or high- (120,000IU) dose vitamin D3, compared with standard/control dose (18,000 IU).

  122. Islam FM, Wu J, Jansson J, Wilson DP. Relative risk of cardiovascular disease among people living with HIV: a systematic review and meta-analysis. HIV Med. 2012;13(8):453–68. https://doi.org/10.1111/j.1468-1293.2012.00996.x.

    Article  PubMed  CAS  Google Scholar 

  123. Rodger AJ, Lodwick R, Schechter M, Deeks S, Amin J, Gilson R, et al. Mortality in well controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population. AIDS. 2013;27(6):973–9. https://doi.org/10.1097/QAD.0b013e32835cae9c.

    Article  PubMed  CAS  Google Scholar 

  124. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92(7):2506–12. https://doi.org/10.1210/jc.2006-2190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. •• Feinstein MJ, Bahiru E, Achenbach C, Longenecker CT, Hsue P, So-Armah K et al. Patterns of cardiovascular mortality for HIV-infected adults in the United States: 1999 to 2013. The American Journal of Cardiology. 2016;117(2):214–20. https://doi.org/10.1016/j.amjcard.2015.10.030. This was a population-wide study of change in CVD mortality among HIV-infected individuals in the United States from 1999 to 2013 using data from the Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research online database.

  126. Boccara F. Acute coronary syndrome in HIV-infected patients. Does it differ from that in the general population? Arch Cardiovasc Dis. 2010;103(11–12):567–9. https://doi.org/10.1016/j.acvd.2010.10.004.

    Article  PubMed  Google Scholar 

  127. Buchacz K, Baker RK, Palella FJ Jr, Shaw L, Patel P, Lichtenstein KA, et al. Disparities in prevalence of key chronic diseases by gender and race/ethnicity among antiretroviral-treated HIV-infected adults in the US. Antivir Ther. 2013;18(1):65–75. https://doi.org/10.3851/imp2450.

    Article  PubMed  Google Scholar 

  128. Guo F, Hsieh E, Lv W, Han Y, Xie J, Li Y, et al. Cardiovascular disease risk among Chinese antiretroviral-naive adults with advanced HIV disease. BMC Infect Dis. 2017;17(1):287. https://doi.org/10.1186/s12879-017-2358-0.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Friis-Moller N, Sabin CA, Weber R, d'Arminio Monforte A, El-Sadr WM, Reiss P, et al. Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med. 2003;349(21):1993–2003. https://doi.org/10.1056/NEJMoa030218.

    Article  PubMed  Google Scholar 

  130. Ross AC, Judd S, Kumari M, Hileman C, Storer N, Labbato D, et al. Vitamin D is linked to carotid intima-media thickness and immune reconstitution in HIV-positive individuals. Antivir Ther. 2011;16(4):555–63. https://doi.org/10.3851/imp1784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Choi AI, Lo JC, Mulligan K, Schnell A, Kalapus SC, Li Y, et al. Association of vitamin D insufficiency with carotid intima-media thickness in HIV-infected persons. Clin Infect Dis. 2011;52(7):941–4. https://doi.org/10.1093/cid/ciq239.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Bellacosa C, Maggi P, Volpe A, Altizio S, Ladisa N, Cicalini S, et al. Epi-aortic lesions, pathologic FMD, endothelial activation and inflammatory markers in advanced naive HIV-infected patients starting ART therapy. J Int AIDS Soc. 2014;17(4 Suppl 3):19545. https://doi.org/10.7448/ias.17.4.19545.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Palella FJ Jr, McKibben R, Post WS, Li X, Budoff M, Kingsley L, et al. Anatomic fat depots and coronary plaque among human immunodeficiency virus-infected and uninfected men in the Multicenter AIDS Cohort Study. Open Forum Infect Dis. 2016;3(2):ofw098. https://doi.org/10.1093/ofid/ofw098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Zungsontiporn N, Tello RR, Zhang G, Mitchell BI, Budoff M, Kallianpur KJ, et al. Non-classical monocytes and monocyte chemoattractant protein-1 (MCP-1) correlate with coronary artery calcium progression in chronically HIV-1 infected adults on stable antiretroviral therapy. PLoS One. 2016;11(2):e0149143. https://doi.org/10.1371/journal.pone.0149143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Chow DC, Kagihara JM, Zhang G, Souza SA, Hodis HN, Li Y, et al. Non-classical monocytes predict progression of carotid artery bifurcation intima-media thickness in HIV-infected individuals on stable antiretroviral therapy. HIV clinical trials. 2016;17(3):114–22. https://doi.org/10.1080/15284336.2016.1162386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Myerson M, Malvestutto C, Aberg JA. Management of lipid disorders in patients living with HIV. J Clin Pharmacol. 2015;55(9):957–74. https://doi.org/10.1002/jcph.473.

    Article  PubMed  Google Scholar 

  137. Younas M, Psomas C, Reynes J, Corbeau P. Immune activation in the course of HIV-1 infection: causes, phenotypes and persistence under therapy. HIV Med. 2016;17(2):89–105. https://doi.org/10.1111/hiv.12310.

    Article  PubMed  CAS  Google Scholar 

  138. Zittermann A. Vitamin D status, supplementation and cardiovascular disease. Anticancer Res. 2018;38(2):1179–86.

    PubMed  Google Scholar 

  139. Zittermann A. The biphasic effect of vitamin D on the musculoskeletal and cardiovascular system. Int J Endocrinol. 2017;2017:3206240. https://doi.org/10.1155/2017/3206240.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kunadian V, Ford GA, Bawamia B, Qiu W, Manson JE. Vitamin D deficiency and coronary artery disease: a review of the evidence. Am Heart J. 2014;167(3):283–91. https://doi.org/10.1016/j.ahj.2013.11.012.

    Article  PubMed  CAS  Google Scholar 

  141. Wang Y, Zhang H. Serum 25-hydroxyvitamin D3 levels are associated with carotid intima-media thickness and carotid atherosclerotic plaque in type 2 diabetic patients. Journal of diabetes research. 2017;2017:3510275. https://doi.org/10.1155/2017/3510275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Hao Y, Ma X, Luo Y, Xu Y, Xiong Q, Zhu J, et al. Inverse association of serum vitamin D in relation to carotid intima-media thickness in Chinese postmenopausal women. PLoS One. 2015;10(3):e0122803. https://doi.org/10.1371/journal.pone.0122803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kalkan GY, Gur M, Koyunsever NY, Seker T, Gozukara MY, Ucar H, et al. Serum 25-hydroxyvitamin D level and aortic intima-media thickness in patients without clinical manifestation of atherosclerotic cardiovascular disease. J Clin Lab Anal. 2015;29(4):305–11. https://doi.org/10.1002/jcla.21770.

    Article  PubMed  CAS  Google Scholar 

  144. Lee S, Ahuja V, Masaki K, Evans RW, Barinas-Mitchell EJ, Ueshima H, et al. A significant positive association of vitamin D deficiency with coronary artery calcification among middle-aged men: for the ERA JUMP study. J Am Coll Nutr. 2016;35(7):614–20. https://doi.org/10.1080/07315724.2015.1118651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. • Chen FH, Liu T, Xu L, Zhang L, Zhou XB. Association of serum vitamin D level and carotid atherosclerosis: a systematic review and meta-analysis. Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine. 2017. https://doi.org/10.1002/jum.14494. This was a systematic review and meta-analysis of 11 clinical studies (16,434 total participants) investigating the relationship between vitamin D levels and carotid atherosclerosis.

  146. Moradi M, Foroutanfar A. Evaluation of vitamin D levels in relation to coronary CT angiographic findings in an Iranian population. Vasc Health Risk Manag. 2017;13:361–7. https://doi.org/10.2147/vhrm.s142721.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ho JS, Cannaday JJ, Barlow CE, Reinhardt DB, Wade WA, Ellis JR. Low 25-OH vitamin D levels are not associated with coronary artery calcium or obstructive stenoses. Coron Artery Dis. 2015;26(6):521–5. https://doi.org/10.1097/mca.0000000000000261.

    Article  PubMed  Google Scholar 

  148. Prentice RL, Pettinger MB, Jackson RD, Wactawski-Wende J, Lacroix AZ, Anderson GL, et al. Health risks and benefits from calcium and vitamin D supplementation: Women’s Health Initiative clinical trial and cohort study. Osteoporos Int. 2013;24(2):567–80. https://doi.org/10.1007/s00198-012-2224-2.

    Article  PubMed  CAS  Google Scholar 

  149. Longenecker CT, Hileman CO, Carman TL, Ross AC, Seydafkan S, Brown TT, et al. Vitamin D supplementation and endothelial function in vitamin D deficient HIV-infected patients: a randomized placebo-controlled trial. Antivir Ther. 2012;17(4):613–21. https://doi.org/10.3851/imp1983.

    Article  PubMed  CAS  Google Scholar 

  150. Eckard AR, Raggi P, O'Riordan MA, Rosebush JC, Labbato D, Chahroudi A, et al. Effects of vitamin D supplementation on carotid intima-media thickness in HIV-infected youth. Virulence. 2017:1–12. https://doi.org/10.1080/21505594.2017.1365217.

  151. • Sinxadi PZ, McIlleron HM, Dave JA, Smith PJ, Levitt NS, Haas DW et al. Plasma efavirenz concentrations are associated with lipid and glucose concentrations. Medicine (Baltimore). 2016;95(2):e2385. https://doi.org/10.1097/md.0000000000002385. This was a cross-sectional study evaluating the association between plasma EFV concentrations and fasting lipid and glucose concentrations in HIV-infected South Africans on EFV-based ART.

  152. Erlandson KM, Kitch D, Tierney C, Sax PE, Daar ES, Melbourne KM, et al. Impact of randomized antiretroviral therapy initiation on glucose metabolism. AIDS. 2014;28(10):1451–61. https://doi.org/10.1097/qad.0000000000000266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Hammond E, McKinnon E, Glendenning P, Williams R, Mallal S, Phillips E. Association between 25-OH vitamin D and insulin is independent of lipoatrophy in HIV. Clin Endocrinol. 2012;76(2):201–6. https://doi.org/10.1111/j.1365-2265.2011.04149.x.

    Article  CAS  Google Scholar 

  154. Szep Z, Guaraldi G, Shah SS, Lo Re V 3rd, Ratcliffe SJ, Orlando G, et al. Vitamin D deficiency is associated with type 2 diabetes mellitus in HIV infection. AIDS. 2011;25(4):525–9. https://doi.org/10.1097/QAD.0b013e328342fdfd.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Adeyemi OM, Livak B, Orsi J, Glesby MJ, Villacres MC, Weber KM, et al. Vitamin D and insulin resistance in non-diabetic women’s interagency HIV study participants. AIDS Patient Care STDs. 2013;27(6):320–5. https://doi.org/10.1089/apc.2012.0400.

    Article  PubMed  PubMed Central  Google Scholar 

  156. • Muhammad J, Chan ES, Brown TT, Tebas P, McComsey GA, Melbourne K et al. Vitamin D supplementation does not affect metabolic changes seen with ART initiation. Open Forum Infect Dis. 2017;4(4):ofx210. https://doi.org/10.1093/ofid/ofx210. This is an analysis of data from the ACTG A5280 Study of high-dose vitamin D3 plus calcium supplementation versus placebo, focused on the impact of supplementation on metabolic parameters including insulin resistance, lipid profile, BMI and waist circumference over 48 weeks after ART initiation.

  157. Smith H, Anderson F, Raphael H, Maslin P, Crozier S, Cooper C. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women—a population-based, randomized, double-blind, placebo-controlled trial. Rheumatology (Oxford). 2007;46(12):1852–7. https://doi.org/10.1093/rheumatology/kem240.

    Article  CAS  Google Scholar 

  158. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–22. https://doi.org/10.1001/jama.2010.594.

    Article  PubMed  CAS  Google Scholar 

  159. •• Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Internal Medicine. 2016;176(2):175–83. https://doi.org/10.1001/jamainternmed.2015.7148. This was a one-year randomized controlled trial of community-dwelling adults ≥ 70 years of age with history of a prior fall, which examined the impact of monthly low-dose (24,000 IU) vitamin D3 supplementation with two alternative regimens (60,000 IU D3 vs. 24,000 IU D3 + 300ug calcifediol) on lower extremity function, ability to successfully achieve 25OHD repletion, and falls.

  160. Ginde AA, Blatchford P, Breese K, Zarrabi L, Linnebur SA, Wallace JI, et al. High-dose monthly vitamin D for prevention of acute respiratory infection in older long-term care residents: a randomized clinical trial. J Am Geriatr Soc. 2017;65(3):496–503. https://doi.org/10.1111/jgs.14679.

    Article  PubMed  Google Scholar 

  161. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ (Clinical research ed). 2003;326(7387):469. https://doi.org/10.1136/bmj.326.7387.469.

    Article  CAS  Google Scholar 

  162. Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: a randomized clinical trial. J Steroid Biochem Mol Biol. 2017;173:317–22. https://doi.org/10.1016/j.jsbmb.2017.03.015.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  163. •• Zhao JG, Zeng XT, Wang J, Liu L. Association between calcium or vitamin D supplementation and fracture incidence in community-dwelling older adults: a systematic review and meta-analysis. Jama. 2017;318(24):2466–82. https://doi.org/10.1001/jama.2017.19344. This was a large meta-analysis of randomized clinical trials of calcium, vitamin D or combined supplementation on fracture incidence among community-dwelling adults adults over 50 years of age.

  164. Grant WB, Karras SN, Bischoff-Ferrari HA, Annweiler C, Boucher BJ, Juzeniene A, et al. Do studies reporting ‘U’-shaped serum 25-hydroxyvitamin D-health outcome relationships reflect adverse effects? Dermato-Endocrinology. 2016;8(1):e1187349. https://doi.org/10.1080/19381980.2016.1187349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. EACS. Guidelines Version 9.0. European AIDS Clinical Society. October 2017. http://www.eacsociety.org/files/guidelines_9.0-english.pdf. Accessed February 9, 2018.

  166. Brown TT, Hoy J, Borderi M, Guaraldi G, Renjifo B, Vescini F, et al. Recommendations for evaluation and management of bone disease in HIV. Clin Infect Dis. 2015;60(8):1242–51. https://doi.org/10.1093/cid/civ010.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Hsieh.

Ethics declarations

Conflict of Interest

Dr. Hsieh is supported by NIH/Fogarty International Center K01TW009995, the Yale Center for Clinical Investigation/Doris Duke Charitable Trust Foundation Fund to Retain Clinical Scientists and has received honoraria from Gilead. Dr. Yin is supported by NIH/NIAID R01 AI-095089 and has served as a consultant for Gilead and Viiv.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Complications of Antiretroviral Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, E., Yin, M.T. Continued Interest and Controversy: Vitamin D in HIV. Curr HIV/AIDS Rep 15, 199–211 (2018). https://doi.org/10.1007/s11904-018-0401-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-018-0401-4

Keywords

Navigation