Skip to main content
Log in

Dietary Lipid and Carbohydrate Interactions: Implications on Lipid and Glucose Absorption, Transport in Gilthead Sea Bream (Sparus aurata) Juveniles

  • Original Article
  • Published:
Lipids

Abstract

A digestibility trial was performed with gilthead sea bream juveniles (IBW = 72 g) fed four diets differing in lipid source (fish oil, FO; or a blend of vegetable oil, VO) and starch content (0 %, CH−; or 20 %, CH+) to evaluate the potential interactive effects between carbohydrates and VO on the processes involved in digestion, absorption and transport of lipids and glucose. In fish fed VO diets a decrease in lipid digestibility and in cholesterol (C), High Density Lipoprotein(HDL)-C and Low Density Lipoprotein (LDL)-C (only in CH+ group) were recorded. Contrarily, dietary starch induced postprandial hyperglycemia and time related alterations on serum triacylglycerol (TAG), phospholipid (PL) and C concentrations. Fish fed a CH+ diet presented lower serum TAG than CH− group at 6 h post-feeding, and the reverse was observed at 12 h post-feeding for TAG and PL. Lower serum C and PL at 6 h post-feeding were recorded only in VOCH+ group. No differences between groups were observed in hepatic and intestinal transcript levels of proteins involved in lipid transport and hydrolysis (FABP, DGAT, GPAT, MTP, LPL, LCAT). Lower transcript levels of proteins related to lipid transport (ApoB, ApoA1, FABP2) were observed in the intestine of fish fed the CH+ diet, but remained unchanged in the liver. Overall, transcriptional mechanisms involved in lipid transport and absorption were not linked to changes in lipid serum and digestibility. Dietary starch affected lipid absorption and transport, probably due to a delay in lipid absorption. This study suggests that a combination of dietary VO and starch may negatively affect cholesterol absorption and transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADC:

Apparent digestibility coefficients

Apo:

Apolipoproteins

CH:

Carbohydrates

C:

Cholesterol

C18 PUFA:

Polyunsaturated fatty acids with 18 carbons

DGAT:

Diacylglycerol acyltransferase

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FA:

Fatty acid

FABP:

Fatty acid binding protein

FM:

Fish meal

FO:

Fish oil

GLU:

Glucose

GPAT:

Glycerol-3-phosphate acyltransferase

G3P:

Glycerol-3-phosphate

HDL:

High-density lipoproteins

LCAT:

Lecithin-cholesterol acyltransferase

LDL:

Low-density lipoproteins

LC-PUFA:

Long-chain polyunsaturated fatty acids

LPL:

Lipoprotein lipase

MTP:

Microsomal triglyceride transfer protein

MUFA:

Monounsaturated fatty acids

NEFA:

Non-esterified fatty acids

PL:

Phospholipid

SFA:

Saturated fatty acids

TAG:

Triacylglycerol

VLDL:

Very low density lipoprotein

VO:

Vegetable oil

References

  1. Bakke AM, Glover C, Krogdahl Å (2010) In: Grosell M, Farrell AP, Brauner CJ (eds) Feeding, digestion and absorption of nutrients. Fish Physiology, Academic Press, USA, pp 57–110

    Google Scholar 

  2. Xiao C, Hsieh J, Adeli K, Lewis GF (2011) Gut–liver interaction in triglyceride-rich lipoprotein metabolism. Am J Physiol Endocrinol Metab 301:E429–E446

    Article  CAS  PubMed  Google Scholar 

  3. Olsen RE, Ringø E (1997) Lipid digestibility in fish: a review. Recent Res Dev Lipid Res 1:199–265

    CAS  Google Scholar 

  4. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  5. Castro C, Corraze G, Panserat S, Oliva-Teles A (2015) Effects of fish oil replacement by a vegetable oil blend on digestibility, postprandial serum metabolite profile, lipid and glucose metabolism of European sea bass (Dicentrarchus labrax) juveniles. Aquac Nutr 21:592–603

    Article  CAS  Google Scholar 

  6. Couto A, Enes P, Peres H, Oliva-Teles A (2012) Temperature and dietary starch level affected protein but not starch digestibility in gilthead sea bream juveniles. Fish Physiol Biochem 38:595–601

    Article  CAS  PubMed  Google Scholar 

  7. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2006) Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp Biochem Physiol A 143:89–96

    Article  CAS  Google Scholar 

  8. Kamalam BS, Panserat S, Aguirre P, Geurden I, Fontagné-Dicharry S, Médale F (2013) Selection for high muscle fat in rainbow trout induces potentially higher chylomicron synthesis and PUFA biosynthesis in the intestine. Comp Biochem Physiol A 164:417–427

    Article  CAS  Google Scholar 

  9. Krogdahl Å, Hemre GI, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac Nutr 11:103–122

    Article  CAS  Google Scholar 

  10. Castro C, Pérez-Jiménez A, Coutinho F, Pousão-Ferreira P, Brandão TM, Oliva-Teles A, Peres H (2013) Digestive enzymes of meagre (Argyrosomus regius) and white seabream (Diplodus sargus). Effects of dietary brewer’s spent yeast supplementation. Aquaculture 416–417:322–327

    Article  Google Scholar 

  11. Olsen RE, Myklebust R, Kaino T, Ringo E (1999) Lipid digestibility and ultrastructural changes in the enterocytes of Arctic charr (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol Biochem 21:35–44

    Article  CAS  Google Scholar 

  12. Corraze G (2001) In: Guillaume J, Kaushik S, Bergot P, Metailler K (eds) Lipid nutrition—nutrition and feeding of fish and crustaceans. Springer, Chichester UK, pp 111–130

    Google Scholar 

  13. Sheridan MA (1988) Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp Biochem Physiol B 90:679–690

    CAS  PubMed  Google Scholar 

  14. Gu M, Kortner TM, Penn M, Hansen AK, Krogdahl Å (2014) Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.). Br J Nutr 111:432–444

    Article  CAS  PubMed  Google Scholar 

  15. Mansbach CM 2nd, Gorelick F (2007) Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am J Physiol Gastrointest Liver Physiol 293:G645–G650

    Article  CAS  PubMed  Google Scholar 

  16. Borges P, Médale F, Véron V, dos Pires M, Dias A, Valente LMP (2013) Lipid digestion, absorption and uptake in Solea senegalensis. Comp Biochem Physiol A 166:26–35

    Article  CAS  Google Scholar 

  17. Kamalam BS, Médale F, Larroquet L, Corraze G, Panserat S (2013) Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates. PLoS One 8:e76570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Francis DS, Turchini GM, Jones PL, De Silva SS (2007) Effects of fish oil substitution with a mix blend vegetable oil on nutrient digestibility in Murray cod, Maccullochella peelii peelii. Aquaculture 269:447–455

    Article  CAS  Google Scholar 

  19. Storebakken T, Shearer KD, Refstie S, Lagocki S, McCool J (1998) Interactions between salinity, dietary carbohydrate concentration on the digestibility of macronutrients and energy in rainbow trout (Oncorhynchus mykiss). Aquaculture 163:347–359

    Article  CAS  Google Scholar 

  20. Torstensen BE, Lie O, Froyland L (2000) Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)—effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources. Lipids 35:653–664

    Article  CAS  PubMed  Google Scholar 

  21. Castro C, Corraze G, Pérez-Jiménez A, Larroquet L, Cluzeaud M, Panserat S, Oliva-Teles A (2015) Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles. Br J Nutr 114:1143–1156

    Article  CAS  PubMed  Google Scholar 

  22. Jordal AEO, Lie Ø, Torstensen BE (2007) Complete replacement of dietary fish oil with a vegetable oil blend affect liver lipid and plasma lipoprotein levels in Atlantic salmon (Salmo salar L.). Aquac Nutr 13:114–130

    Article  CAS  Google Scholar 

  23. Morais S, Pratoomyot J, Torstensen BE, Taggart JB, Guy DR, Bell JG, Tocher DR (2011) Diet x genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon (Salmo salar) in response to replacement of dietary fish oil with vegetable oil. Br J Nutr 106:1457–1469

    Article  CAS  PubMed  Google Scholar 

  24. Luo L, Xue M, Vachot C, Geurden I, Kaushik S (2014) Dietary medium chain fatty acids from coconut oil have little effects on postprandial plasma metabolite profiles in rainbow trout (Oncorhynchus mykiss). Aquaculture 420–421:24–31

    Article  Google Scholar 

  25. Richard N, Kaushik S, Larroquet L, Panserat S, Corraze G (2006) Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Br J Nutr 96:299–309

    Article  CAS  PubMed  Google Scholar 

  26. Richard N, Mourente G, Kaushik S, Corraze G (2006) Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.). Aquaculture 261:1077–1087

    Article  CAS  Google Scholar 

  27. Geay D, Ferraresso S, Zambonino-Infante JL, Bargelloni L, Quentel C, Vandeputte M, Kaushik S, Cahu CL, Mazurais D (2011) Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-subfamilies showing different growth rate with the plant-based diet. BMC Genom 12:522–539

    Article  CAS  Google Scholar 

  28. Kjaer MA, Vegusdal A, Gjøen T, Rustan AC, Todorcevic M, Ruyter B (2008) Effect of rapeseed oil and dietary n-3 fatty acids on triacylglycerol synthesis and secretion in Atlantic salmon hepatocytes. Biochi Biophys Acta 1781:112–122

    Article  CAS  Google Scholar 

  29. Leaver MJ, Villeneuve LA, Obach A, Jensen L, Bron JE, Tocher DR, Taggart JB (2008) Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). BMC Genom 9:299–313

    Article  Google Scholar 

  30. Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gibson GT, Hardy RW, Elliot H, Hu G, Krogdahl A, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38:551–579

    Article  CAS  Google Scholar 

  31. Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. doi:10.1016/j.aquaculture.2015.01.010

    PubMed  PubMed Central  Google Scholar 

  32. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2009) Nutritional regulation of hepatic glucose metabolism. Fish Physiol Biochem 35:519–539

    Article  CAS  PubMed  Google Scholar 

  33. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2011) Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.) juveniles. Rev Fish Sci 19:201–215

    Article  CAS  Google Scholar 

  34. Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B 182:1015–1045

    Article  CAS  PubMed  Google Scholar 

  35. Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquacult Res 41:717–732

    Article  CAS  Google Scholar 

  36. Oliva-Teles A (2000) Recent advances in European sea bass and gilthead sea bream nutrition. Aquacult Int 8:477–492

    Article  Google Scholar 

  37. Cho CY, Slinger SJ, Bayley HS (1982) Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comp Biochem Physiol 73:25–41

    Article  Google Scholar 

  38. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  39. Varó I, Navarro J, Rigos G, Del Ramo J, Calduch-Giner J, Hernández A, Pertusa J, Torreblanca A (2013) Proteomic evaluation of potentiated sulfa treatment on gilthead sea bream (Sparus aurata L.) liver. Aquaculture 376–379:36–44

    Article  Google Scholar 

  40. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2008) Hepatic glucokinase and glucose-6-phosphatase responses to dietary glucose and starch in gilthead sea bream (Sparus aurata) juveniles reared at two temperatures. Comp Biochem Physiol A 149:80–86

    Article  CAS  Google Scholar 

  41. Pérez-Sánchez J, Benedito-Palos L, Estensoro I, Petropoulos Y, Calduch-Giner JA, Browdy CL, Sitjà-Bobadilla A (2015) Effects of dietary NEXT ENHANCE®150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol 44:117–128

    Article  PubMed  Google Scholar 

  42. Mininni AN, Milan M, Ferraresso S, Petochi T, Di Marco P, Marino G, Livi S, Romualdi C, Bargelloni L, Patarnello T (2014) Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature. BMC Genom 15:765

    Article  Google Scholar 

  43. Pérez-Sánchez J, Borrel M, Bermejo-Nogales A, Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Kaushik S (2013) Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (Sparus aurata) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility. Comp Biochem Physiol D 8:123–130

    Google Scholar 

  44. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bell JG, Koppe W (2011) Lipids in Aquafeeds. In: Turchini GM, Ng WK, Tocher DR (eds) Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds. Taylor & Francis, CRC Press, Boca Raton, pp 21–59

    Google Scholar 

  46. Geurden I, Kaushik S, Corraze G (2008) Dietary phosphatidylcholine affects postprandial plasma levels and digestibility of lipid in common carp (Cyprinus carpio). Br J Nutr 100:512–517

    Article  CAS  PubMed  Google Scholar 

  47. Tocher DR, Bendiksen EA, Campbell PJ, Bell JG (2008) The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 280:21–34

    Article  CAS  Google Scholar 

  48. Caballero MJ, Izquierdo MS, Kjørsvik E, Montero D, Socorro J, Fernández AJ, Rosenlund G (2003) Morphological aspects of intestinal cells from gilthead sea bream (Sparus aurata) fed diets containing different lipid sources. Aquaculture 225:325–340

    Article  CAS  Google Scholar 

  49. Pérez JA, Rodríguez C, Henderson RJ (1999) The uptake and esterification of radiolabelled fatty acids by enterocytes isolated from rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 20:125–134

    Article  Google Scholar 

  50. Caballero MJ, Gallardo G, Robaina L, Montero D, Fernández A, Izquierdo M (2006) Vegetable lipid sources affect in vitro biosynthesis of triacylglycerols and phospholipids in the intestine of sea bream (Sparus aurata). Br J Nutr 95:448–454

    Article  CAS  PubMed  Google Scholar 

  51. Oxley A, Torstensen BE, Rustan AC, Olsen RE (2005) Enzyme activities of intestinal triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B 141:77–87

    Article  PubMed  Google Scholar 

  52. Fernandez ML, West KL (2005) Mechanisms by which dietary fatty acids modulate plasma lipids. J Nutr 135:2075–2078

    CAS  PubMed  Google Scholar 

  53. Katan M, Zock P, Mensink R (1994) Effects of fats and fatty acids on blood lipids in humans: an overview. Am J Clin Nutr 60:1017S–1022S

    CAS  PubMed  Google Scholar 

  54. Torstensen BE, Froyland L, Lie O (2004) Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil–effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. Aquacult Nutr 10:175–192

    Article  CAS  Google Scholar 

  55. Brufau G, Canela MA, Rafecas M (2008) Phytosterols: physiologic and metabolic aspects related to cholesterol lowering properties. Nutr Res 28:217–225

    Article  CAS  PubMed  Google Scholar 

  56. Moghadasian MH, Frohlich JJ (1999) Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: clinical and experimental evidence. Am J Med 107:588–594

    Article  CAS  PubMed  Google Scholar 

  57. Ostlund RE (2002) Phytosterols in human nutrition. Annu Rev Nutr 22:533–549

    Article  CAS  PubMed  Google Scholar 

  58. Ostlund RE (2004) Phytosterols and cholesterol metabolism. Curr Opin Lipidol 15:37–41

    Article  CAS  PubMed  Google Scholar 

  59. Gilman CI, Leusch FD, Breckenridge WC, MacLatchy DL (2003) Effects of a phytosterol mixture on male fish plasma lipoprotein fractions and testis P450scc activity. Gen Comp Endocrinol 130:172–184

    Article  CAS  PubMed  Google Scholar 

  60. de Jong A, Plat J, Mensink RP (2003) Metabolic effects of plant sterols and stanols (review). J Nutr Biochem 14:362–369

    Article  PubMed  Google Scholar 

  61. Panserat S, Kolditz C, Richard N, Plagnes-Juan E, Piumi F, Esquerré D, Médale F, Corraze G, Kaushik S (2008) Hepatic gene expression profiles in juvenile rainbow trout (Oncorhynchus mykiss) fed fishmeal or fish oil-free diets. Br J Nutr 100:953–967

    Article  PubMed  Google Scholar 

  62. Peng M, Xu W, Mai K, Zhou H, Zhang Y, Liufu Z, Zhang K, Ai Q (2014) Growth performance, lipid deposition and hepatic lipid metabolism related gene expression in juvenile turbot (Scophthalmus maximus L.) fed diets with various fish oil substitution levels by soybean oil. Aquaculture 433:442–449

    Article  CAS  Google Scholar 

  63. Dorfman SE, Wang S, Vega-López S, Jauhiainen M, Lichtenstein AH (2005) Dietary fatty acids and cholesterol differentially modulate HDL cholesterol metabolism in golden-syrian hamsters. J Nutr 135:492–498

    CAS  PubMed  Google Scholar 

  64. Jonas A (2000) Lecithin cholesterol acyltransferase. Biochim Biophys Acta 1529:245–256

    Article  CAS  PubMed  Google Scholar 

  65. Kunnen S, Van Eck M (2012) Lecithin: cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res 53:1783–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hatahet W, Cole L, Kudchodkar BJ, Fungwe TV (2003) Dietary fats differentially modulate the expression of lecithin:cholesterol acyltransferase, apoprotein-A1 and scavenger receptor B1 in rats. J Nutr 133:689–694

    CAS  PubMed  Google Scholar 

  67. Dias J, Alvarez MJ, Diez A, Arzel J, Corraze G, Bautista JM, Kaushik SJ (1998) Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture 161:169–186

    Article  CAS  Google Scholar 

  68. Kamalam BS, Médale F, Kaushik S, Polakof S, Skiba-Cassy S, Panserat S (2012) Regulation of metabolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content. J Exp Biol 215:2567–2578

    Article  CAS  PubMed  Google Scholar 

  69. Peres MH, Gonçalves P, Oliva-Teles A (1999) Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Aquaculture 179:415–423

    Article  CAS  Google Scholar 

  70. Fried SK, Rao SP (2003) Sugars, hypertriglyceridemia, and cardiovascular disease. Am J Clin Nutr 78:873S–880S

    CAS  PubMed  Google Scholar 

  71. Parks EJ, Hellerstein MK (2000) Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr 71:412–433

    CAS  PubMed  Google Scholar 

  72. Fountoulaki E, Alexis MN, Nengas I, Venou B (2005) Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.). Aquacult Res 36:1243–1251

    Article  CAS  Google Scholar 

  73. Hemre GI, Sandnes K, Lie ø, Torrissen O, Waagboe R (1995) Carbohydrate nutrition in Atlantic salmon, Salmo salar L.: growth and feed utilization. Aquacult Res 26:149–154

    Article  Google Scholar 

  74. Iqbal J, Hussain MM (2005) Evidence for multiple complementary pathways for efficient cholesterol absorption in mice. J Lipid Res 46:1491–1501

    Article  CAS  PubMed  Google Scholar 

  75. Pan X, Hussain MM (2012) Gut triglyceride production. Biochim Biophys Acta 1821:727–735

    Article  CAS  PubMed  Google Scholar 

  76. Engelking LR (2010) In: Engelking LR (ed) Triglycerides and Glycerophospholipids, Textbook of veterinary physiological chemistry, updated 2nd edn., Academic Press (Elsevier), Amsterdam Netherlands, pp 315–326

Download references

Acknowledgments

The authors express their thanks to P. Correia for technical assistance. This work was partially supported by national funds through the FCT (Foundation for Science and Technology)—under the project‘PEst-C/MAR/LA0015/2011’ and co-financed by the European Regional Development Fund (ERDF) through the COMPETE—operational competitiveness programme. C. C. was supported by a grant (SFRH/BD/76297/2011) from FCT, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Castro.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, C., Corraze, G., Basto, A. et al. Dietary Lipid and Carbohydrate Interactions: Implications on Lipid and Glucose Absorption, Transport in Gilthead Sea Bream (Sparus aurata) Juveniles. Lipids 51, 743–755 (2016). https://doi.org/10.1007/s11745-016-4140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4140-2

Keywords

Navigation