Skip to main content

Advertisement

Log in

Nutritional regulation of hepatic glucose metabolism in fish

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Glucose plays a key role as energy source in the majority of mammals, but its importance in fish appears limited. Until now, the physiological basis for such apparent glucose intolerance in fish has not been fully understood. A distinct regulation of hepatic glucose utilization (glycolysis) and production (gluconeogenesis) may be advanced to explain the relative inability of fish to efficiently utilize dietary glucose. We summarize here information regarding the nutritional regulation of key enzymes involved in glycolysis (hexokinases, 6-phosphofructo-1-kinase and pyruvate kinase) and gluconeogenesis (phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and glucose-6-phosphatase) pathways as well as that of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The effect of dietary carbohydrate level and source on the activities and gene expression of the mentioned key enzymes is also discussed. Overall, data strongly suggest that the liver of most fish species is apparently capable of regulating glucose storage. The persistent high level of endogenous glucose production independent of carbohydrate intake level may lead to a putative competition between exogenous (dietary) glucose and endogenous glucose as the source of energy, which may explain the poor dietary carbohydrate utilization in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baanante IV, Garcia de Frutos P, Bonamusa L, Fernandez F (1991) Regulation of fish glycolysis-gluconeogenesis: role of fructose-2,6-P2 and PFK-2. Comp Biochem Physiol 100B:11–17

    CAS  Google Scholar 

  • Blin C, Panserat S, Médale F, Gomes E, Brèque J, Kaushik S et al (1999) Teleost liver hexokinase and glucokinase-like enzymes: partial cDNA cloning and phylogenetic studies in rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata). Fish Physiol Biochem 21:93–102. doi:10.1023/A:1007748204428

    CAS  Google Scholar 

  • Blin C, Panserat S, Kaushik S, Krishnamoorthy R (2000) Partial molecular cloning and tissue distribution of hexokinase I cDNA in common carp. J Fish Biol 56:1558–1561. doi:10.1111/j.1095-8649.2000.tb02166.x

    CAS  Google Scholar 

  • Bonamusa L, Garcia de Frutos P, Fernandez F, Baanante IV (1992) Nutritional effects on key glycolytic-gluconeogenic enzyme activities and metabolite levels in the liver of the teleost fish Sparus aurata. Mol Mar Biol Biotechnol 1:113–124

    CAS  Google Scholar 

  • Borrebaek B, Christophersen B (2000) Hepatic glucose phosphorylating activities in perch (Perca fluviatilis) after different dietary treatments. Comp Biochem Physiol 125B:387–393

    CAS  Google Scholar 

  • Borrebaek B, Christophersen B (2001) Activities of glucose phosphorylation, glucose-6-phosphatase and lipogenic enzymes in the liver of perch, Perca fluviatilis, after different dietary treatment. Aquacult Res 32:221–224. doi:10.1046/j.1355-557x.2001.00018.x

    CAS  Google Scholar 

  • Borrebaek B, Waagbo R, Christophersen B, Tranulis MA, Hemre GI (1993) Adaptable hexokinase with low affinity for glucose in the liver of Atlantic salmon (Salmo salar). Comp Biochem Physiol 106B:833–836

    CAS  Google Scholar 

  • Borrebaek B, Christophersen B, Sundby A (2003) Metabolic function of hepatic hexokinase in perch, Perca fluviatilis. Aquacult Res 34:235–239. doi:10.1046/j.1365-2109.2003.00809.x

    CAS  Google Scholar 

  • Busby ER, Cooper GA, Mommsen TP (2002) Novel role for prostaglandin E-2 in fish hepatocytes: regulation of glucose metabolism. J Endocrinol 174:137–146. doi:10.1677/joe.0.1740137

    PubMed  CAS  Google Scholar 

  • Capilla E, Médale F, Navarro I, Panserat S, Vachot C, Kaushik S et al (2003) Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regul Pept 110:123–132. doi:10.1016/S0167-0115(02)00212-4

    PubMed  CAS  Google Scholar 

  • Capilla E, Médale F, Panserat S, Vachot C, Rema P, Gomes E et al (2004) Response of hexokinase enzymes and the insulin system to dietary carbohydrates in the common carp, Cyprinus carpio. Reprod Nutr Dev 44:233–242. doi:10.1051/rnd:2004027

    PubMed  CAS  Google Scholar 

  • Caseras A, Metón I, Fernández F, Baanante IV (2000) Glucokinase gene expression is nutritionally regulated in liver of gilthead sea bream (Sparus aurata). Biochim Biophys Acta 1493:135–141

    PubMed  CAS  Google Scholar 

  • Caseras A, Metón I, Vives C, Egea M, Fernández F, Baanante IV (2002) Nutritional regulation of glucose-6-phosphatase gene expression in liver of the gilthead sea bream (Sparus aurata). Br J Nutr 88:607–614. doi:10.1079/BJN2002701

    PubMed  CAS  Google Scholar 

  • Cowey CB, Walton MJ (1989) Intermediary metabolism. In: Halver JE (ed) Fish nutrition. Academic Press, San Diego, pp 260–329

    Google Scholar 

  • Cowey CB, Adron JW, Brown DA (1975) Studies on the nutrition of marine flatfish. The metabolism of glucose by plaice (Pleuronectes platessa) and the effect of dietary energy source on protein utilization in plaice. Br J Nutr 33:219–231. doi:10.1079/BJN19750026

    PubMed  CAS  Google Scholar 

  • Cowey CB, Knox D, Walton MJ, Adron JW (1977) The regulation of gluconeogenesis by diet and insulin in rainbow trout (Salmo gairdneri). Br J Nutr 38:463–470. doi:10.1079/BJN19770111

    PubMed  CAS  Google Scholar 

  • Dias J, Rueda-Jasso R, Panserat S, da Conceição LEC, Gomes EF, Dinis MT (2004) Effect of dietary carbohydrate-to-lipid ratios on growth, lipid deposition and metabolic hepatic enzymes in juvenile Senegalese sole (Solea senegalensis, Kaup). Aquacult Res 35:1122–1130. doi:10.1111/j.1365-2109.2004.01135.x

    CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2006a) Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp Biochem Physiol 143A:89–96

    CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2006b) Rapid metabolic adaptation in European sea bass (Dicentrarchus labrax) juveniles fed different carbohydrate sources after heat shock stress. Comp Biochem Physiol 145A:73–81

    CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2008a) Growth performance and metabolic utilization of diets with native and waxy maize starch by gilthead sea bream (Sparus aurata) juveniles. Aquaculture 274:101–108. doi:10.1016/j.aquaculture.2007.11.009

    CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2008b) Hepatic glucokinase and glucose-6-phosphatase responses to dietary glucose and starch in gilthead sea bream (Sparus aurata) juveniles reared at two temperatures. Comp Biochem Physiol 149A:80–86

    CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2008c) Rearing temperature enhances hepatic glucokinase but not glucose-6-phosphatase activities in European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) juveniles fed with the same level of glucose. Comp Biochem Physiol 150A:355–358

    CAS  Google Scholar 

  • Fernández F, Miquel AG, Cordoba M, Varas M, Metón I, Caseras A et al (2007) Effects of diets with distinct protein-to-carbohydrate ratios on nutrient digestibility, growth performance, body composition and liver intermediary enzyme activities in gilthead sea bream (Sparus aurata, L.) fingerlings. J Exp Mar Biol Ecol 343:1–10. doi:10.1016/j.jembe.2006.10.057

    Google Scholar 

  • Fideu MD, Soler G, Ruiz-Amil M (1983) Nutritional regulation of glycolysis in rainbow trout (Salmo gairdneri R.). Comp Biochem Physiol 74B:795–799

    CAS  Google Scholar 

  • Foster GD, Moon TW (1989) Insulin and the regulation of glycogen metabolism and gluconeogenesis in American eel hepatocytes. Gen Comp Endocrinol 73:374–381. doi:10.1016/0016-6480(89)90194-9

    PubMed  CAS  Google Scholar 

  • Foster GD, Moon TW (1990a) Control of key carbohydrate-metabolizing enzymes by insulin and glucagon in freshly isolated hepatocytes of the marine teleost Hemitripterus americanus. J Exp Zool 62:254–255

    Google Scholar 

  • Foster GD, Moon TW (1990b) The role of glycogen phosphorylase in the regulation of glycogenolysis by insulin and glucagon in isolated eel (Anguilla rostrata) hepatocytes. Fish Physiol Biochem 8:299–309. doi:10.1007/BF00003425

    CAS  Google Scholar 

  • Foster GD, Storey KB, Moon TW (1989) The regulation of 6-phosphofructo-1-kinase by insulin and glucagon in isolated hepatocytes of American eel. Gen Comp Endocrinol 73:382–389. doi:10.1016/0016-6480(89)90195-0

    PubMed  CAS  Google Scholar 

  • Garcia de Frutos P, Bonamusa L, Fernandez F, Baanante IV (1990) Fructose-2, 6-bisphosphate in liver of Sparus aurata: influence of nutritional state. Comp Biochem Physiol 96B:63–65

    Google Scholar 

  • Garcia de Frutos P, Bonamusa L, Baanante IV (1991) Metabolic changes in fish liver during the starved-to-fed transition. Comp Biochem Physiol 98A:329–331. doi:10.1016/0300-9629(91)90541-J

    CAS  Google Scholar 

  • Geurden I, Aramendi M, Zambonino-Infante JL, Panserat S (2007) Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilisation in juveniles. Am J Physiol Regul Integr Comp Physiol 292:R2275–R2283. doi:10.1152/ajpregu.00444.2006

    PubMed  CAS  Google Scholar 

  • Hanson RW, Reshef L (1997) Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 66:581–611. doi:10.1146/annurev.biochem.66.1.581

    PubMed  CAS  Google Scholar 

  • Hemre G-I, Mommsen TP, Krogdahl Å (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquacult Nutr 8:175–194. doi:10.1046/j.1365-2095.2002.00200.x

    CAS  Google Scholar 

  • Hilton JW, Atkinson JL (1982) Response of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets. Br J Nutr 47:597–607. doi:10.1079/BJN19820071

    PubMed  CAS  Google Scholar 

  • Hsieh SL, Shiau SY (2000) Effects of diets containing different carbohydrates on starved condition in juvenile tilapia Oreochromis niloticus × O. aureus. Fish Sci 66:32–37. doi:10.1046/j.1444-2906.2000.00004.x

    CAS  Google Scholar 

  • Kaushik S (1999) Nutrition glucidique: intérêt et limites des apports de glucides. In: Guillaume J, Kaushik S, Bergot P, Métailler R (eds) Nutrition et alimentation des poissons et crustacés. INRA Editions, France, pp 171–186

    Google Scholar 

  • Kirchner S, Kaushik S, Panserat S (2003a) Effect of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 134A:337–347

    CAS  Google Scholar 

  • Kirchner S, Kaushik S, Panserat S (2003b) Low protein intake is associated with reduced hepatic gluconeogenic enzyme expression in rainbow trout (Oncorhynchus mykiss). J Nutr 133:2561–2564

    PubMed  CAS  Google Scholar 

  • Kirchner S, Seixas P, Kaushik S, Panserat S (2005) Effects of low protein intake on extra-hepatic gluconeogenic enzyme expression and peripheral glucose phosphorylation in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 140B:333–340

    CAS  Google Scholar 

  • Klover PJ, Mooney RA (2004) Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol 36:753–758. doi:10.1016/j.biocel.2003.10.002

    PubMed  CAS  Google Scholar 

  • Knox D, Walton MJ, Cowey CB (1980) Distribution of enzymes of glycolysis and gluconeogenesis in fish tissues. Mar Biol (Berl) 56:7–10. doi:10.1007/BF00390588

    CAS  Google Scholar 

  • Krasnov A, Teerijoki H, Molsa H (2001) Rainbow trout (Onchorhynchus mykiss) hepatic glucose transporter. Biochim Biophys Acta 1520:174–178

    PubMed  CAS  Google Scholar 

  • Lin JH, Shiau SY (1995) Hepatic enzyme adaptation to different carbohydrates in juvenile tilapia Oreochromis niloticus × O. aureus. Fish Physiol Biochem 14:165–170

    CAS  Google Scholar 

  • Lucas A (1998) Programming by early nutrition: an experimental approach. J Nutr 458:401S–406S

    Google Scholar 

  • Metón I, Caseras A, Mediavilla D, Fernández F, Baanante IV (1999a) Molecular cloning of a cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from liver of Sparus aurata: nutritional regulation of enzyme expression. Biochim Biophys Acta 1444:153–165

    PubMed  Google Scholar 

  • Metón I, Mediavilla D, Caseras A, Canto E, Fernández F, Baanante IV (1999b) Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br J Nutr 82:223–232

    PubMed  Google Scholar 

  • Metón I, Caseras A, Fernández F, Baanante IV (2000) 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression is regulated by diet composition and ration size in liver of gilthead sea bream, Sparus aurata. Biochim Biophys Acta 1491:220–228

    PubMed  Google Scholar 

  • Metón I, Fernández F, Baanante IV (2003) Short- and long-term effects of refeeding on key enzyme activities in glycolysis-gluconeogenesis in the liver of gilthead seabream (Sparus aurata). Aquaculture 225:99–107. doi:10.1016/S0044-8486(03)00281-3

    Google Scholar 

  • Metón I, Caseras A, Fernández F, Baanante IV (2004) Molecular cloning of hepatic glucose-6-phosphate catalytic subunit from gilthead sea bream (Sparus aurata): response of its mRNA levels and glucokinase expression to refeeding and diet composition. Comp Biochem Physiol 138B:145–153

    Google Scholar 

  • Mommsen TP, Plisetskaya EM (1991) Insulin in fishes and agnathans: history, structure and metabolic regulation. Rev Aquat Sci 4:225–259

    CAS  Google Scholar 

  • Mommsen TP, Suarez RK (1984) Control of gluconeogenesis in rainbow trout hepatocytes: role of pyruvate branchpoint and phosphoenolpyruvate-pyruvate cycle. Mol Physiol 6:9–18

    CAS  Google Scholar 

  • Moon TW (1983) Metabolic reserves and enzyme activities with food deprivation in immature American eels Anguilla rostrata (LeSueur). Can J Zool 61:802–811

    Article  CAS  Google Scholar 

  • Moon TW (2001) Glucose intolerance in teleost fish: face or fiction? Comp Biochem Physiol 129B:243–249

    CAS  Google Scholar 

  • Moon TW, Busby ER, Cooper GA, Mommsen TP (1999) Fish hepatocyte glycogen phosphorylase—a sensitive indicator for hormonal modulation. Fish Physiol Biochem 21:15–24. doi:10.1023/A:1007762229093

    CAS  Google Scholar 

  • Morata P, Faus MJ, Perez-Palomo M, Sánchez-Medina F (1982a) Effect of stress on liver and muscle glycogen phosphorylase in rainbow trout (Salmo gairdneri). Comp Biochem Physiol 72B:421–425

    CAS  Google Scholar 

  • Morata P, Vargas AM, Sánchez-Medina F, Garcia M, Cardenete G, Zamora S (1982b) Evolution of gluconeogenic enzyme activities during starvation in liver and kidney of the rainbow trout (Salmo gairdneri). Comp Biochem Physiol 71B:65–70

    CAS  Google Scholar 

  • Moreira IS, Peres H, Couto A, Enes P, Oliva-Teles A (2008) Temperature and dietary carbohydrate levels effects on performance and metabolic utilisation of diets in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 274:153–160. doi:10.1016/j.aquaculture.2007.11.016

    CAS  Google Scholar 

  • Nagai M, Ikeda S (1971) Carbohydrate metabolism in fish. I. Effects of starvation and dietary composition on the blood glucose level and the hepatopancreatic glycogen and lipid contents in carp. Bull Jpn Soc Sci Fish 37:404–409

    CAS  Google Scholar 

  • Nagayama F, Ohshima H (1974) Studies on enzyme-system of carbohydrate-metabolism in fish. 1. Properties of liver hexokinase. Bull Jpn Soc Sci Fish 40:285–290

    CAS  Google Scholar 

  • Nagayama F, Ohshima H, Takeushi T (1973) Activities of hexokinase and glucose dehydrogenase in fish liver. Bull Jpn Soc Sci Fish 39:1349

    CAS  Google Scholar 

  • Nagayama F, Ohshima H, Suzuki H, Ohshima T (1980) A hexokinase from fish liver with wide specificity for nucleotides as phosphoryl donor. Biochim Biophys Acta 615:85–93

    PubMed  CAS  Google Scholar 

  • Navarro I, Gutiérrez J (1995) Fasting and starvation. In: Hochachka PW, Mommsen TP (eds) Metabolic biochemistry. Elsevier Science, Amsterdam, pp 393–434

    Google Scholar 

  • Panserat S, Blin C, Médale F, Plagnes-Juan E, Brèque J, Krishnamoorthy J et al (2000a) Molecular cloning, tissue distribution and sequence analysis of complete glucokinase cDNAs from gilthead seabream (Sparus aurata), rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Biochim Biophys Acta 1474:61–69

    PubMed  CAS  Google Scholar 

  • Panserat S, Médale F, Blin C, Brèque J, Vachot C, Plagnes-Juan E et al (2000b) Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp. Am J Physiol Regul Integr Comp Physiol 278:R1164–R1170

    PubMed  CAS  Google Scholar 

  • Panserat S, Médale F, Brèque J, Plagnes-Juan E, Kaushik S (2000c) Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J Nutr Biochem 11:22–29. doi:10.1016/S0955-2863(99)00067-4

    PubMed  CAS  Google Scholar 

  • Panserat S, Capilla E, Gutiérrez J, Frappart PO, Vachot C, Plagnes-Juan E et al (2001a) Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose. Comp Biochem Physiol 128B:275–283

    CAS  Google Scholar 

  • Panserat S, Plagnes-Juan E, Brèque J, Kaushik S (2001b) Hepatic phosphoenolpyruvate carboxykinase gene expression is not repressed by dietary carbohydrates in rainbow trout (Oncorhynchus mykiss). J Exp Biol 204:359–365

    PubMed  CAS  Google Scholar 

  • Panserat S, Plagnes-Juan E, Kaushik S (2001c) Nutritional regulation and tissue specificity of gene expression for proteins involved in hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). J Exp Biol 204:2351–2360

    PubMed  CAS  Google Scholar 

  • Panserat S, Perrin A, Kaushik S (2002a) High dietary lipids induce liver glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J Nutr 132:137–141

    PubMed  CAS  Google Scholar 

  • Panserat S, Plagnes-Juan E, Kaushik S (2002b) Gluconeogenic enzyme gene expression is decreased by dietary carbohydrates in common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata). Biochim Biophys Acta 1579:35–42

    PubMed  CAS  Google Scholar 

  • Párrizas M, Planas J, Plisetskaya EM, Gutiérrez J (1994) Insulin receptors and its tyrosine kinase activity in skeletal muscle of carnivorous and omnivorous fish. Am J Physiol 266:R1944–R1950

    PubMed  Google Scholar 

  • Patel S, Srinivasan M (2002) Metabolic programming: causes and consequences. J Biol Chem 277:1629–1632. doi:10.1074/jbc.R100017200

    PubMed  CAS  Google Scholar 

  • Pereira C, Vijayan MM, Storey KB, Jones RA, Moon TW (1995) Role of glucose and insulin in regulating glycogen synthase and phosphorylase activities in rainbow trout hepatocytes. J Comp Physiol 165B:62–70

    Google Scholar 

  • Pérez-Jiménez A, Guedes MJ, Morales AE, Oliva-Teles A (2007) Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture 265:325–335. doi:10.1016/j.aquaculture.2007.01.021

    Google Scholar 

  • Petersen TDP, Hochachka PW, Suarez RK (1987) Hormonal control of gluconeogenesis in rainbow trout hepatocytes: regulatory role of pyruvate kinase. J Exp Zool 243:173–180. doi:10.1002/jez.1402430202

    CAS  Google Scholar 

  • Pilkis S, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909. doi:10.1146/annurev.ph.54.030192.004321

    PubMed  CAS  Google Scholar 

  • Printz RL, Magnuson MA, Granner DK (1993) Mammalian glucokinase. Annu Rev Nutr 13:463–496. doi:10.1146/annurev.nu.13.070193.002335

    PubMed  CAS  Google Scholar 

  • Puviani AC, Ottolenghi C, Gavioli ME, Fabbri E, Brighenti L (1990) Action of glucagon and glucagon-like peptide on glycogen metabolism of trout isolated hepatocytes. Comp Biochem Physiol 96B:387–391

    CAS  Google Scholar 

  • Shikata T, Kheyyali D, Shimeno S (1993) Effect of feeding rates on hepatopancreatic enzymes and body composition in common carp. Nippon Suisan Gakkaishi 59:835–839

    CAS  Google Scholar 

  • Shikata T, Iwanaga S, Shimeno S (1994) Effects of dietary glucose, fructose, and galactose on hepatopancreatic enzyme activities and body composition in carp. Fish Sci 60:613–617

    CAS  Google Scholar 

  • Shimeno S, Ikeda S (1967) Studies on glucose-6-phosphatase of aquatic animals. II. The enzyme’s activities in fish tissues. Bull Jpn Soc Sci Fish 33:112–116

    Google Scholar 

  • Soengas JL, Strong EF, Fuentes J, Veira JAR, Andres MD (1996) Food deprivation and refeeding in Atlantic Salmon, Salmo Salar—effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol Biochem 15:491–511. doi:10.1007/BF01874923

    CAS  Google Scholar 

  • Soengas JL, Polakof S, Chen X, Sangiao-Alvarellos S, Moon TW (2006) Glucokinase and hexokinase expression and activities in rainbow trout tissues: changes with food deprivation and refeeding. Am J Physiol Regul Integr Comp Physiol 291:R810–R821. doi:10.1152/ajpregu.00115.2006

    PubMed  CAS  Google Scholar 

  • Stone DAJ (2003) Dietary carbohydrate utilization by fish. Rev Fish Sci 11:337–369. doi:10.1080/10641260390260884

    CAS  Google Scholar 

  • Suarez RK, Mommsen TP (1987) Gluconeogenesis in teleost fishes. Can J Zool 65:1869–1882

    CAS  Google Scholar 

  • Suarez MD, Sanz A, Bazoco J, Garcia-Gallego M (2002) Metabolic effects of changes in the dietary protein: carbohydrate ratio in eel (Anguilla anguilla) and trout (Oncorhynchus mykiss). Aquacult Int 10:143–156. doi:10.1023/A:1021371104839

    CAS  Google Scholar 

  • Sugita T, Shimeno S, Hosokawa H, Masumoto T (1999) Response of hepatopancreatic enzyme activities and metabolic intermediate concentrations to bovine insulin and glucose administration in carp Cyprinus carpio. Nippon Suisan Gakkaishi 65:896–900

    CAS  Google Scholar 

  • Sugita T, Shimeno S, Ohkubo Y, Hsokawa H, Masumoto T (2001a) Response of enzyme activities and metabolic intermediate concentrations to epinephrine administration in hepatopancreas and muscle of carp. Fish Sci 67:281–286. doi:10.1046/j.1444-2906.2001.00231.x

    CAS  Google Scholar 

  • Sugita T, Shimeno S, Ohkubo Y, Hsokawa H, Masumoto T (2001b) Response of enzyme activities and metabolic intermediate concentrations to glucagon administration in hepatopancreas and muscle of carp. Fish Sci 67:157–162. doi:10.1046/j.1444-2906.2001.00212.x

    CAS  Google Scholar 

  • Sundby A, Hemre GI, Borrebaek B, Christophersen B, Blom AK (1991) Insulin and glucagon family peptides in relation to activities of hepatic hexokinase and other enzymes in fed and starved Atlantic salmon (Salmo salar) and cod (Gadus morhua). Comp Biochem Physiol 100B:467–470

    CAS  Google Scholar 

  • Tan Q, Xie S, Zhu X, Lei W, Yang Y (2006) Effect of dietary carbohydrate sources on growth performance and utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Günther). Aquacult Nutr 12:61–70. doi:10.1111/j.1365-2095.2006.00382.x

    CAS  Google Scholar 

  • Tranulis MA, Dregni O, Christophersen B, Krogdahl A, Borrebaek B (1996) A glucokinase-like enzyme in the liver of Atlantic salmon (Salmo salar). Comp Biochem Physiol 114B:35–39

    CAS  Google Scholar 

  • Tranulis MA, Christophersen B, Borrebaek B (1997) Glucokinase in Atlantic halibut (Hippoglossus hippoglossus) Brockmann bodies. Comp Biochem Physiol 116B:367–370

    CAS  Google Scholar 

  • Tung P-H, Shiau S-Y (1991) Effects of meal frequency on growth-performance of hybrid tilapia, Oreochromis niloticus × O. aureus, fed different carbohydrate diets. Aquaculture 92:343–350. doi:10.1016/0044-8486(91)90039-A

    Google Scholar 

  • van de Werve G, Lange A, Newgard C, Mechin MC, Li YZ, Berteloot A (2000) New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. Eur J Biochem 267:1533–1549. doi:10.1046/j.1432-1327.2000.01160.x

    PubMed  Google Scholar 

  • Walton MJ (1986) Metabolic effects of feeding a high protein/low carbohydrate diet as compared to a low protein/high carbohydrate diet to rainbow trout Salmo gairdneri. Fish Physiol Biochem 1:7–15. doi:10.1007/BF02309589

    CAS  Google Scholar 

  • Walton MJ, Cowey CB (1979) Gluconeogenesis from serine in rainbow trout liver. Comp Biochem Physiol 62B:497–499

    CAS  Google Scholar 

  • Walton MJ, Cowey CB (1982) Aspects of intermediary metabolism in salmonid fish. Comp Biochem Physiol 73B:59–79

    CAS  Google Scholar 

  • Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124:67–80. doi:10.1016/0044-8486(94)90363-8

    CAS  Google Scholar 

  • Wright JJR, O’-hali W, Yang H, Han X, Bonen A (1998) GLUT-4 Deficiency and severe peripheral resistance to insulin in the teleost fish tilapia. Gen Comp Endocrinol 111:20–27. doi:10.1006/gcen.1998.7081

    PubMed  CAS  Google Scholar 

  • Yamada K, Noguchi T (1999) Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochem J 337:1–11. doi:10.1042/0264-6021:3370001

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Enes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enes, P., Panserat, S., Kaushik, S. et al. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol Biochem 35, 519–539 (2009). https://doi.org/10.1007/s10695-008-9259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9259-5

Keywords

Navigation