Skip to main content
Log in

Vegetable oil and carbohydrate-rich diets marginally affected intestine histomorphology, digestive enzymes activities, and gut microbiota of gilthead sea bream juveniles

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

For an increased incorporation of plant ingredients in aquafeeds at the expense of fish meal (FM) and fish oil (FO), more knowledge is needed on the effects at the intestine level of dietary vegetable oils (VO) and carbohydrates (CH), and of possible interactions. For that purpose, in this study, the activities of digestive pancreatic enzymes (amylase, lipase, total alkaline proteases), gut microbiota, and histomorphology were assessed in gilthead sea bream (IBW 71.0 ± 1.5 g) fed four diets differing in lipid source (FO or a blend of VO) and carbohydrate content (0% or 20% gelatinized starch) for 81 days. No major changes in digestive enzyme activities were noticed in fish fed the experimental diets. Dietary VO, but not CH content, modified intestinal microbial profile, by increasing the similarity of bacterial communities. Especially when combined with CH, dietary VO promoted abnormal enterocyte architecture. Liver histology was also accessed, and an increased cytoplasmic vacuolization of hepatocytes was related with dietary CH inclusion, being only significantly different in fish fed FO-based diets. Overall, nutritional interactions between dietary lipid source and carbohydrate content were not observed on digestive enzyme activities and microbial profile. However, the intestine histological modifications observed in fish fed the VOCH+ diet suggest a negative interaction between dietary VO and CH. This requires a more in depth assessment in future studies as it can have negative consequences at a functional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amirkolaie AK, Verreth JAJ, Schrama JW (2006) Effect of gelatinization degree and inclusion level of dietary starch on the characteristics of digesta and faeces in Nile tilapia (Oreochromis niloticus (L.)). Aquaculture 260:194–205

    Article  CAS  Google Scholar 

  • Aslaksen MA, Kraugerud OF, Penn M, Svihus B, Denstadli V, Jørgensen HY, Hillestad M, Krogdahl Å, Storebakken T (2007) Screening of nutrient digestibilities and intestinal pathologies in Atlantic salmon, Salmo salar, fed diets with legumes, oilseeds, or cereals. Aquaculture 272:541–555

    Article  CAS  Google Scholar 

  • Baeza-Arino R, Martinez-Llorens S, Nogales-Merida S, Jover-Cerda M, Tomas-Vidal A (2016) Study of liver and gut alterations in sea bream, Sparus aurata L., fed a mixture of vegetable protein concentrates. Aquac Res 47:460–471

    Article  CAS  Google Scholar 

  • Benedito-Palos L, Navarro JC, Sitja-Bobadilla A, Bell JG, Kaushik S, Perez-Sanchez J (2008) High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream (Sparus aurata L.): growth performance, muscle fatty acid profiles and histological alterations of target tissues. Br J Nutr 100:992–1003

    Article  CAS  PubMed  Google Scholar 

  • Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Kaushik S, Perez-Sanchez J (2007) Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead sea bream (Sparus aurata L.): networking of systemic and local components of GH/IGF axis. Aquaculture 267:199–212

    Article  CAS  Google Scholar 

  • Borey et al (2016) Postprandial kinetics of gene expression of proteins involved in the digestive process in rainbow trout (O. mykiss) and impact of diet composition. Fish Physiol Biochem 42:1187–1202

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochemist 72:248–254

    Article  CAS  Google Scholar 

  • Caballero MJ, Izquierdo MS, Kjorsvik E, Fernandez AJ, Rosenlund G (2004) Histological alterations in the liver of sea bream, Sparus aurata L., caused by short- or long-term feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the sole lipid source. J Fish Dis 27:531–541

    Article  CAS  PubMed  Google Scholar 

  • Caballero MJ, Izquierdo MS, Kjorsvik E, Montero D, Socorro J, Fernandez AJ, Rosenlund G (2003) Morphological aspects of intestinal cells from gilthead seabream (Sparus aurata) fed diets containing different lipid sources. Aquaculture 225:325–340

    Article  CAS  Google Scholar 

  • Caballero MJ, Obach A, Rosenlund G, Montero D, Gisvold M, Izquierdo MS (2002) Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214:253–271

    Article  CAS  Google Scholar 

  • Castro C, Corraze G, Basto A, Larroquet L, Panserat S, Oliva-Teles A (2016a) Dietary lipid and carbohydrate interactions: implications on lipid and glucose absorption, transport in gilthead sea bream (Sparus aurata) juveniles. Lipids 51:743–755

    Article  CAS  PubMed  Google Scholar 

  • Castro C, Corraze G, Firmino-Diogenes A, Larroquet L, Panserat S, Oliva-Teles A (2016b) Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles. Br J Nutr 116:19–34

    Article  CAS  PubMed  Google Scholar 

  • Castro C, Corraze G, Panserat S, Oliva-Teles A (2015a) Effects of fish oil replacement by a vegetable oil blend on digestibility, postprandial serum metabolite profile, lipid and glucose metabolism of European sea bass (Dicentrarchus labrax) juveniles. Aquac Nutr 21:592–603

    Article  CAS  Google Scholar 

  • Castro C, Corraze G, Pérez-Jiménez A, Larroquet L, Cluzeaud M, Panserat S, Oliva-Teles A (2015b) Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles. Br J Nutr 114:1143–1156

    Article  CAS  PubMed  Google Scholar 

  • Castro C, Couto A, Pérez-Jiménez A, Serra CR, Díaz-Rosales P, Fernandes R, Corraze G, Panserat S, Oliva-Teles A (2016c) Effects of fish oil replacement by vegetable oil blend on digestive enzymes and tissue histomorphology of European sea bass (Dicentrarchus labrax) juveniles. Fish Physiol Biochem 42:203–217

    Article  CAS  PubMed  Google Scholar 

  • Chikwati EM, Venold FF, Penn MH, Rohloff J, Refstie S, Guttvik A, Hillestad M, Krogdahl Å (2012) Interaction of soyasaponins with plant ingredients in diets for Atlantic salmon, Salmo salar. L Br J Nutr 107:1570–1590

    Article  CAS  PubMed  Google Scholar 

  • Clements KD (1997) Fermentation and gastrointestinal microorganisms in fishes. In: Mackie RI, White BA (eds) Gastrointestinal microbiology: Volume 1 Gastrointestinal ecosystems and fermentations. Springer US, Boston, MA, pp 156–198. https://doi.org/10.1007/978-1-4615-4111-0_6

  • Couto A, Enes P, Peres H, Oliva-Teles A (2008) Effect of water temperature and dietary starch on growth and metabolic utilization of diets in gilthead sea bream (Sparus aurata) juveniles. Comp Biochem Physiol A 151:45–50

    Article  CAS  Google Scholar 

  • Couto A, Enes P, Peres H, Oliva-Teles A (2012) Temperature and dietary starch level affected protein but not starch digestibility in gilthead sea bream juveniles. Fish Physiol Biochem 38:595–601

    Article  CAS  PubMed  Google Scholar 

  • Couto A, Kortner TM, Penn M, Bakke AM, Krogdahl A, Oliva-Teles A (2014) Effects of dietary phytosterols and soy saponins on growth, feed utilization efficiency and intestinal integrity of gilthead sea bream (Sparus aurata) juveniles. Aquaculture 432:295–303

    Article  CAS  Google Scholar 

  • De Francesco M et al (2007) Effect of high-level fish meal replacement by plant proteins in gilthead sea bream (Sparus aurata) on growth and body/fillet quality traits. Aquac Nutr 13:361–372

    Article  Google Scholar 

  • Dimitroglou A, Merrifield DL, Spring P, Sweetman J, Moate R, Davies SJ (2010) Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture 300:182–188

    Article  CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2008) Growth performance and metabolic utilization of diets with native and waxy maize starch by gilthead sea bream (Sparus aurata) juveniles. Aquaculture 274:101–108

    Article  CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2009) Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol Biochem 35:519–539

    Article  CAS  PubMed  Google Scholar 

  • Estruch G, Collado MC, Penaranda DS, Tomas Vidal A, Jover Cerda M, Perez Martinez G, Martinez-Llorens S (2015) Impact of fishmeal replacement in diets for gilthead sea bream (Sparus aurata) on the gastrointestinal microbiota determined by pyrosequencing the 16S rRNA. Gene PLoS One 10:e0136389

  • Fernandez F, Miquel AG, Cordoba M, Varas M, Meton I, Caseras A, Baanante IV (2007) Effects of diets with distinct protein-to-carbohydrate ratios on nutrient digestibility, growth performance, body composition and liver intermediary enzyme activities in gilthead sea bream (Sparus aurata, L.) fingerlings. J Exp Mar Biol Ecol 343:1–10

    Article  CAS  Google Scholar 

  • Fountoulaki E et al (2009) Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile: recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures. Aquaculture 289:317–326

    Article  CAS  Google Scholar 

  • Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227

    Article  CAS  Google Scholar 

  • Gatesoupe FJ et al (2014) The effects of dietary carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass juveniles, Dicentrarchus labrax. Aquaculture 422:47–53

    Article  CAS  Google Scholar 

  • Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl Å, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, J Souza E, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579

    Article  CAS  Google Scholar 

  • Geurden I, Jutfelt F, Olsen RE, Sundell KS (2009) A vegetable oil feeding history affects digestibility and intestinal fatty acid uptake in juvenile rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol A 152:552–559

    Article  CAS  Google Scholar 

  • Ghosh S, DeCoffe D, Brown K, Rajendiran E, Estaki M, Dai C, Yip A, Gibson DL (2013) Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS One 8:e55468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Requeni P, Mingarro M, Calduch-Giner JA, Médale F, Martin SAM, Houlihan DF, Kaushik S, Pérez-Sánchez J (2004) Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232:493–510

    Article  CAS  Google Scholar 

  • Gómez GD, Balcázar JL (2008) A review on the interactions between gut microbiota and innate immunity of fish FEMS. Immunol Med Microbiol 52:145–154

    Article  CAS  Google Scholar 

  • Gu M, Bai N, Zhang YQ, Krogdahl A (2016) Soybean meal induces enteritis in turbot Scophthalmus maximus at high supplementation levels. Aquaculture 464:286–295

    Article  CAS  Google Scholar 

  • Heiman ML, Greenway FL (2016) A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab 5:317–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo MC, Urea E, Sanz A (1999) Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170:267–283

    Article  CAS  Google Scholar 

  • Izquierdo MS, Montero D, Robaina L, Caballero MJ, Rosenlund G, Gines R (2005) Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture 250:431–444

    Article  CAS  Google Scholar 

  • Izquierdo MS, Obach A, Arantzamendi L, Montero D, Robaina L, Rosenlund G (2003) Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality. Aquac Nutr 9:397–407

    Article  CAS  Google Scholar 

  • Jutfelt F, Olsen RE, Björnsson BT, Sundell K (2007) Parr-smolt transformation and dietary vegetable lipids affect intestinal nutrient uptake, barrier function and plasma cortisol levels in Atlantic salmon. Aquaculture 273:298–311

    Article  CAS  Google Scholar 

  • Kamalam BS, Medale F, Kaushik S, Polakof S, Skiba-Cassy S, Panserat S (2012) Regulation of metabolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content. J Exp Biol 215:2567–2578

    Article  CAS  PubMed  Google Scholar 

  • Kaushik SJ, Luquet P, Blanc D, Paba A (1989) Studies on the nutrition of Siberian sturgeon, Acipenser baeri: I. Utilization of digestible carbohydrates by sturgeon. Aquaculture 76:97–107

    Article  Google Scholar 

  • Keshavanath P, Manjappa K, Gangadhara B (2002) Evaluation of carbohydrate rich diets through common carp culture in manured tanks. Aquac Nutr 8:169–174

    Article  Google Scholar 

  • Kissil GW, Lupatsch I (2004) Successful replacement of fishmeal by plant proteins in diets for the gilthead seabream, Sparus aurata L Isr J Aquac-Bamidgeh 56:188–199

  • Kjaer MA, Vegusdal A, Gjoen T, Rustan AC, Todorcevic M, Ruyter B (2008) Effect of rapeseed oil and dietary n-3 fatty acids on triacylglycerol synthesis and secretion in Atlantic salmon hepatocytes. Biochim Biophys Acta 1781:112–122. https://doi.org/10.1016/j.bbalip.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  • Knudsen D, Jutfelt F, Sundh H, Sundell K, Koppe W, Frokiaer H (2008) Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). Br J Nutr 100:120–129

    Article  CAS  PubMed  Google Scholar 

  • Koven WM, Henderson RJ, Sargent JR (1994) Lipid digestion in turbot (Scophtalmus maximus): I. Lipid class and fatty acid composition of digesta from different segments of thedigestive tract. Fish Physiol Biochem 13:69–79

    Article  CAS  PubMed  Google Scholar 

  • Kowalska A, Zakes Z, Jankowska B, Siwicki A (2010) Impact of diets with vegetable oils on the growth, histological structure of internal organs, biochemical blood parameters, and proximate composition of pikeperch Sander lucioperca (L.). Aquaculture 301:69–77

    Article  CAS  Google Scholar 

  • Krogdahl A, Bakke-McKellep AM, Baeverfjord G (2003) Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac Nutr 9:361–371

    Article  Google Scholar 

  • Krogdahl A, Penn M, Thorsen J, Refstie S, Bakke AM (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res 41:333–344

    Article  CAS  Google Scholar 

  • Leenhouwers JI, Pellikaan WF, Huizing HFA, Coolen ROM, Verreth JAJ, Schrama JW (2008) Fermentability of carbohydrates in an in vitro batch culture method using inocula from Nile tilapia (Oreochromis niloticus) and European sea bass (Dicentrarchus labrax). Aquac Nutr 14:U44–U53

    Article  CAS  Google Scholar 

  • Martinez-Llorens S, Baeza-Arino R, Nogales-Merida S, Jover-Cerda M, Tomas-Vidal A (2012) Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: amino acid retention, digestibility, gut and liver histology. Aquaculture 338:124–133

    Article  CAS  Google Scholar 

  • Mohapatra M, Sahu NP, Chaudhari A (2003) Utilization of gelatinized carbohydrate in diets of Labeo rohita fry. Aquac Nutr 9:189–196

    Article  CAS  Google Scholar 

  • Moldal T, Løkka G, Wiik-Nielsen J, Austbø L, Torstensen BE, Rosenlund G, Dale O, Kaldhusdal M, Koppang E (2014) Substitution of dietary fish oil with plant oils is associated with shortened mid intestinal folds in Atlantic salmon (Salmo salar). BMC Vet Res 10:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montero D, Mathlouthi F, Tort L, Afonso JM, Torrecillas S, Fernández-Vaquero A, Negrin D, Izquierdo MS (2010) Replacement of dietary fish oil by vegetable oils affects humoral immunity and expression of pro-inflammatory cytokines genes in gilthead sea bream Sparus aurata. Fish Shellfish Immunol 29:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41:1553–1573

    Article  Google Scholar 

  • Oliva-Teles A (2000) Recent advances in European sea bass and gilthead sea bream nutrition. Aquacult Int 8:477–492

    Article  Google Scholar 

  • Olsen RE, Dragnes BT, Myklebust R, Ringo E (2003) Effect of soybean oil and soybean lecithin on intestinal lipid composition and lipid droplet accumulation of rainbow trout, Oncorhynchus mykiss Walbaum. Fish Physiol Biochem 29:181–192

    Article  CAS  Google Scholar 

  • Olsen RE, Myklebust R, Kaino T, Ringo E (1999) Lipid digestibility and ultrastructural changes in the enterocytes of Arctic char (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol Biochem 21:35–44

    Article  CAS  Google Scholar 

  • Pérez-Jiménez A, Cardenete G, Morales AE, Garcia-Alcazar A, Abellan E, Hidalgo MC (2009) Digestive enzymatic profile of Dentex dentex and response to different dietary formulations. Comp Biochem Physiol A 154:157–164

    Article  CAS  Google Scholar 

  • Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x

    Article  CAS  Google Scholar 

  • Ray AK, Ghosh K, Ringo E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18:465–492

    Article  CAS  Google Scholar 

  • Ringo E et al (2016) Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac Nutr 22:219–282

    Article  CAS  Google Scholar 

  • Robaina L, Izquierdo MS, Moyano FJ, Socorro J, Vergara JM, Montero D, Fernandez-Palacios H (1995) Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata) - nutritional and histological implications. Aquaculture 130:219–233

    Article  Google Scholar 

  • Santigosa E, Garcia-Meilan I, Valentin JM, Navarro I, Perez-Sanchez J, Gallardo MA (2011) Plant oils’ inclusion in high fish meal-substituted diets: effect on digestion and nutrient absorption in gilthead sea bream (Sparus aurata L.). Aquac Res 42:962–974

    Article  CAS  Google Scholar 

  • Santigosa E, Sanchez J, Medale F, Kaushik S, Perez-Sanchez J, Gallardo MA (2008) Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture 282:68–74

    Article  CAS  Google Scholar 

  • Silva FCP, Nicoli JR, Zambonino-Infante JL, Le Gall MM, Kaushik S, Gatesoupe FJ (2010) Influence of partial substitution of dietary fish meal on the activity of digestive enzymes in the intestinal brush border membrane of gilthead sea bream, Sparus aurata and goldfish, Carassius auratus. Aquaculture 306:233–237

    Article  CAS  Google Scholar 

  • Silva FC, Nicoli JR, Zambonino-Infante JL, Kaushik S, Gatesoupe FJ (2011) Influence of the diet on the microbial diversity of faecal and gastrointestinal contents in gilthead sea bream (Sparus aurata) and intestinal contents in goldfish (Carassius auratus) FEMS Microbiol Ecol 78:285–96. https://doi.org/10.1111/j.1574-6941.2011.01155.x

  • Sitja-Bobadilla A, Pena-Llopis S, Gomez-Requeni P, Medale F, Kaushik S, Perez-Sanchez J (2005) Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture 249:387–400

    Article  CAS  Google Scholar 

  • Stone DAJ (2003) Dietary carbohydrate utilization by fish. Rev Fish Sci 11:337–369

    Article  CAS  Google Scholar 

  • Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107

    Article  CAS  Google Scholar 

  • Venou B, Alexis MN, Fountoulaki E, Nengas I, Apostolopoulou M, Castritsi-Cathariou I (2003) Effect of extrusion of wheat and corn on gilthead sea bream (Sparus aurata) growth, nutrient utilization efficiency, rates of gastric evacuation and digestive enzyme activities. Aquaculture 225:207–223

    Article  CAS  Google Scholar 

  • Walter HE (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer HJ (ed) Methods of enzymatic analysis, vol V. Verlag Chemie, Weinham, pp 270–277

    Google Scholar 

  • Wassef EA, Wahby OM, Sakr EM (2007) Effect of dietary vegetable oils on health and liver histology of gilthead seabream (Sparus aurata) growers. Aquac Res 38:852–861

    Article  CAS  Google Scholar 

  • Yu H-N, Zhu J, W-s P, Shen S-R, Shan W-G, Das UN (2014) Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota. Arch Med Res 45:195–202

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Overland M, Sorensen M, Penn M, Mydland LT, Shearer KD, Storebakken T (2012) Optimal inclusion of lupin and pea protein concentrates in extruded diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 344:100–113

    Article  CAS  Google Scholar 

  • Zhou CP, Ge XP, Liu B, Xie J, Miao LH (2013) Effect of high dietary carbohydrate on the growth performance and physiological responses of juvenile Wuchang bream, Megalobrama amblycephala. Asian Australas J Anim Sci 26:1598–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was co-financed by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Programme and national funds through FCT—under the project “PEst-C/MAR/LA0015/2011”. C.C., A.C., and CRS were supported by grants (SFRH/BPD/114942/2016, SFRH/BPD/101354/2014, SFRH/BPD/101038/2014 respectively) from FCT. A.D. was supported by the National Counsel of Technological and Scientific Development (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia R. Serra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, C., Couto, A., Diógenes, A.F. et al. Vegetable oil and carbohydrate-rich diets marginally affected intestine histomorphology, digestive enzymes activities, and gut microbiota of gilthead sea bream juveniles. Fish Physiol Biochem 45, 681–695 (2019). https://doi.org/10.1007/s10695-018-0579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-018-0579-9

Keywords

Navigation