Skip to main content
Log in

Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)—Effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources

  • Published:
Lipids

Abstract

Triplicate groups of Atlantic salmon (Salmo salar L.) were fed four diets containing different oils as the sole lipid source, i.e., capelin oil, oleic acid-enriched sunflower oil, a 1∶1 (w/w) mixture of capelin oil and oleic acid-enriched sunflower oil, and palm oil (PO). The β-oxidation capacity, protein utilization, digestibility of dietary fatty acids and fatty acid composition of lipoproteins, plasma, liver, belly flap, red and white muscle were measured. Further, the lipid class and protein levels in the lipoproteins were analyzed. The different dietary fatty acid compositions did not significantly affect protein utilization or β-oxidation capacity in red muscle. The levels of total cholesterol, triacylglycerols, and protein in very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL), and plasma were not significantly affected by the dietary fatty acids. VLDL, LDL, and HDL fatty acid compositions were decreasingly affected by dietary fatty acid composition. Dietary fatty acid composition significantly affected both the relative fatty acid composition and the amount of fatty acids (mg fatty acid per g tissue, wet weight) in belly flap, liver, red and white muscle. Apparent digestibility of the fatty acids measured by adding yttrium oxide as inert marker, was significantly lower in fish fed the PO diet compared to the other three diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

apparent digestibility

BW:

body weight

CO:

capelin oil

COSF:

mix (1∶1) of oleic acid-enriched sunflower oil and capelin oil

CPT-I:

carnitine palmitioyl transferase-I

FCR:

lee conversion ratio

HDL:

high density lipoprotein

LDL:

low density lipoprotein

NFE:

mtrogen-free extract

PCA:

principal component analysis

PL:

phospholipid

PO:

palm oil

PPV:

productive protein value

PUFA:

polyunsaturated fatty acid

SF:

oleic acid-enriched sunflower oil

PUFA:

polyunsaturated fatty acid

SF:

oleic acid-enriched sunflower oil

SGR:

specific growth rate

TAG:

triacylglycerol

VLDL:

very low density lipoprotein

References

  1. Drevon, C.A. (1992) Marine Oils and Their Effects, Nutr. Rev. 50, 38–45.

    Article  PubMed  CAS  Google Scholar 

  2. Bilinski, E. (1963) Utilization of Lipids by Fish. I. Fatty Acid Oxidation by Tissue Slices from Dark and White Muscle of Rainbow trout (Salmo gairdnerii), Can. J. Biochem. Physiol. 41, 107–112.

    PubMed  CAS  Google Scholar 

  3. Bilinski, E., and Jonas, E.E. (1970) Effects of Coenzyme A and Carnitine on Fatty Acid Oxidation by Rainbow Trout Mitochondria (Salmo gairdnerii), J. Fish. Res. Bd. Can. 27, 857–864.

    CAS  Google Scholar 

  4. Frøyland, L., Madsen, L., Eckhoff, K.M., Lie, Ø., and Berge, R. (1998) Carnitine Palmitoyltransferase I, Carnitine Palmitoyl Transferase II, and Acyl-CoA Oxidase Activities in Atlantic Salmon (Salmo salar), Lipids 33, 923–930.

    PubMed  Google Scholar 

  5. Kiessling, K.-H., and Kiessling, A. (1993) Selective Utilization of Fatty Acids in Rainbow Trout (Onchorhychus mykiss Walbaum) Red Muscle Mitochondria, Can. J. Zool. 71, 248–251.

    CAS  Google Scholar 

  6. Henderson, R.J. (1996) Fatty Acid Metabolism in Freshwater Fish with Particular Reference to Polyunsaturated Fatty Acids, Arch. Anim. Nutr. 49, 5–22.

    Article  CAS  Google Scholar 

  7. Henderson, R.J., and Sargent, J.R. (1985) Chain Length Specificities of Mitochondrial and Peroxisomal β-Oxidation of Fatty Acids in Livers of Rainbow Trout (Salmo gairdneri), Comp. Biochem. Biophys. 82B, 79–85.

    CAS  Google Scholar 

  8. Rønnestad, I., Finn, R.N., Lein, I., and Lie, Ø. (1995) Compartmental Changes in the Contents of Total Lipid, Lipid Classes and Their Associated Fatty Acids in Developing Yok-sac Larvae of Atlantic Halibut, Hippoglossus hippoglossus (L.), Aquacult. Nutr. 1, 119–130.

    Article  Google Scholar 

  9. Frøyland, L., Berge, R., and Lie, Ø. (1999) Mitochondrial and Peroxisomal β-Oxidation Capacities in Various Tissues from Atlantic Salmon (Salmo salar), Aquacult. Nutr., in press.

  10. Babin, P.J., and Vernier, J.-M. (1989) Plasma Lipoproteins in Fish, J. Lipid Res. 30, 467–489.

    PubMed  CAS  Google Scholar 

  11. Fernandez, M.J., Soscia, A.E., Sun, G.S., Tosca, M., and McNamara, D.J. (1996) Olive Oil and Rapeseed Oil Differ in Their Effect on Plasma Low-Density Lipoprotein Metabolism in the Guinea-Pig, Br. J. Nutr. 76, 869–880.

    Article  PubMed  CAS  Google Scholar 

  12. Fernandez, M.L., Vergara-Jimenez, M., Conde, K., and Abdel-Fattah, G. (1996) Dietary Carbohydrate Type and Fat Amount Alter VLDL and LDL Metabolism in Guinea Pigs, J. Nutr. 126, 2494–2504.

    PubMed  CAS  Google Scholar 

  13. Salter, A.M., Mangiapane, E.H., Bennett, A.J., Bruce, J.S., Billett, M.A., Anderson, K.L., Marenah, C.B., Lawson, N., and White, D.A. (1998) The Effect of Different Dietary Fatty Acids on Lipoprotein Metabolism: Concentration-Dependent Effects of Diets Enriched in Oleic, Myristic, Palmitic and Stearic Acids, Br. J. Nutr. 79, 195–202.

    Article  PubMed  CAS  Google Scholar 

  14. Asset, G., Staels, B., Wolff, R.L., Baugé, E., Madj, Z., Fruchart, J.C., and Dallongeville, J. (1999) Effects of Pinus pinaster and Pinus koraiensis Seed Oil Supplementation on Lipoprotein Metabolism in the Rat, Lipids 34, 39–44.

    PubMed  CAS  Google Scholar 

  15. Temme, E.H.M., Mensink, R.P., and Hornstra, G. (1997) Effects of Medium Chain Fatty Acids (MCFA), Myristic Acid, and Oleic Acid on Serum Lipoproteins in Healthy Subjects, J. Lipid Res. 38, 1746–1754.

    PubMed  CAS  Google Scholar 

  16. Truswell, A.S., and Choudhury, N. (1998) Monounsaturated Oils Do Not All Have the Same Effect on Plasma Cholesterol, Eur. J. Clin. Nutr. 52, 312–315.

    Article  PubMed  CAS  Google Scholar 

  17. Lie, Ø., Sandvin, A., and Waagbø, R. (1993) Influence of Dietary Fatty Acids on the Lipid Composition of Lipoproteins in Farmed Atlantic Salmon (Salmo salar), Fish Physiol. Biochem. 12, 249–260.

    Article  CAS  Google Scholar 

  18. Lie, Ø., Lied, E., and Lambertsen, G. (1987) LIpid Digestion in Cod (Gadus morhua), Comp. Biochem. Physiol. 88B, 697–700.

    CAS  Google Scholar 

  19. Sigurgisladottir, S., Lall, S.P., Parrish, C.C., and Ackman, R.G. (1992) Cholestane as a Digestibility Marker in the Absorption of Polyunsaturated Fatty Acid Ethyl Esters in Atlantic Salmon, Lipids 27, 418–424.

    PubMed  CAS  Google Scholar 

  20. Olsen, R.E., Henderson, R.J., and Ringø, E. (1998) The Digestion and Selective Absorption of Dietary Fatty Acids in Arctic Charr, Salvelinus alpinus, Aquacult. Nutr. 4, 13–21.b

    Article  CAS  Google Scholar 

  21. Lied, E., and Lambertsen, G. (1982) Apparent Availability of Fat and Individual Fatty Acids in Atlantic Cod (Gadus morhua), Fisk. Dir. Skrifter, Ser. Ernœring II, 63–75.

    Google Scholar 

  22. Frøyland, L., Asiedu, D.K., Vaagenes, H., Garras, A., Lie, Ø., Totland, G.K., and Berge, R.K. (1995) Tetradecylthioacetic Acid Incorporated into Very Low Density Lipoprotein: Changes in the Fatty Acid Composition and Reduced Plasma Lipids in Cholesterol-Fed Hamsters, J. Lipid Res. 36, 2529–2540.

    PubMed  Google Scholar 

  23. Havel, R.J., Eder, H.A., and Havel, R.J. (1955) The Distribution and Chemical Composition of Ultra-Centrifugally Separated Lipoproteins in Human Sera, J. Clin. Invest. 34, 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  24. Aviram, A. (1983) Plasma Lipoprotein Separation by Discontinuous Density Gradient Ultracentrifugation in Hyperlipo-proteinemic Patients, Biochem. Med. 30, 111–118.

    Article  PubMed  CAS  Google Scholar 

  25. Lie, Ø., Sandvin, A., and Waagbø, R. (1994) Transport of α-Tocopherol in Atlantic Salmon (Salmo salar) During Vitellogenesis, Fish Physiol. Biochem. 13, 241–247.

    Article  CAS  Google Scholar 

  26. Warnick, G.R., Cheung, M.C., and Albers, J.J. (1979) Comparison of Current Methods for High-Density Lipoprotein Cholesterol Quantitation, Clin. Chem. 25, 596–604.

    PubMed  CAS  Google Scholar 

  27. Lie, Ø., and Lambertsen, G. (1991) Fatty Acid Composition of Glycerophospholipids in Seven Tissues of Cod (Gadus morhua), Determined by Combined High-Performance Liquid Chromatography and Gas Chromatography, J. Chromatogr. 565, 119–129.

    PubMed  CAS  Google Scholar 

  28. Sandnes, K., Lie, Ø., and Waagbø, R. (1988) Normal Ranges of Some Blood Chemistry Parameters in Adult Farmed Atlantic Salmon, Salmo salar, J. Fish Biol. 32, 129–136.

    Article  CAS  Google Scholar 

  29. Wold, S., Esbensen, K., and Geladi, P. (1987) Principal Component Analysis, Chemom. Intell. Lab. Syst. 2, 37–52.

    Article  CAS  Google Scholar 

  30. Mannaerts, G.P., and Van Veldhoven, P.P. (1993) Metabolic Role of Mammalian Peroxisomes, in Peroxisomes. Biology and Importance in Toxicology and Medicine (Gibson, G., and Lake, B., eds.), pp. 19–62, Taylor & Francis, London.

    Google Scholar 

  31. Henderson, R.J. and Tocher, D.R. (1987) The Lipid Composition and Biochemistry of Freshwater Fish, Prog. Lipid. Res. 26, 281–347.

    Article  PubMed  CAS  Google Scholar 

  32. Bremer, J. (1997) The Role of Carnitine in Cell Metabolism, in Carnitine Today (De Simone, C., and Famularo, G., eds.), pp. 1–38, Landes Bioscience, Austin.

    Google Scholar 

  33. Schoonjans, K., Staels, B. and Auwerx, J. (1996) The Peroxisome Proliferator Activated Receptors (PPARs) and Their Effects on Lipid Metabolism and Adipocyte Differentiation, Biochim. Biophys. Acta 1302, 92–109.

    Google Scholar 

  34. Frøyland, L., Madsen, L., Vaagenes, H., Totland, G.K., Auwerx, J., Kryvi, H., Staels, B. and Berge, R.K. (1997) Mitochondrion Is the Principal Target for Nutritional and Pharmacological Control of Triglyceride Metabolism, J. Lipid. Res. 38, 1851–1858.

    PubMed  Google Scholar 

  35. Henderson, R.J. and Sargent, J.R. (1982) Peroxisomal Oxidation of Fatty Acids in Livers of Rainbow Trout (Salmo gairdneri) Fed Diets of Marine Zooplankton, Comp. Biochem. Biophys. 73B, 565–570.

    Article  CAS  Google Scholar 

  36. Henderson, R.J., and Sargent, J.R. (1985) Fatty Acid Metabolism in Fish, in Nutrition and Feeding in Fish (Cowey, C.B., Mackie, A.M., and Bell, J.G., eds.), pp. 349–364, Academic Press, London.

    Google Scholar 

  37. Grundy, S.M., and Denke, M.A. (1990) Dietary Influences on Serum Lipids, J. Lipid. Res. 31, 1149–1172.

    PubMed  CAS  Google Scholar 

  38. Lie, Ø., Waagbø, R. and Sandnes, K. (1988) Growth and Chemical Composition of Adult Atlantic Salmon (Salmo salar) Fed Dry Silage Based Diets, Aquaculture 69, 343–353.

    Article  Google Scholar 

  39. Waagbø, R., Sandnes, K., Sandvin, A. and Lie, Ø. (1991) Feeding Three Levels of n-3 Polyunsaturated Fatty Acids at Two Levels of Vitamin E to Atlantic Salmon (Salmo salar). Growth and Chemical Composition, Fisk. Dir. Skr., Ser. Ernaering 4, 51–63.

    Google Scholar 

  40. Brodtkorb, B.T., Rosenlund, G. and Lie, Ø. (1997) Effects of 20∶5n−3 and 22∶6n−3 on Tissue Lipid Composition in Juvenile Atlantic Salmon, Salmo salar, with Emphasis on Brain and Eye, Aquacult. Nutr. 3, 175–187.

    Article  CAS  Google Scholar 

  41. Zhou, S., Ackman, R.G. and Morrison, C. (1996) Adipocytes and Lipid Distribution in the Muscle of Atlantic Salmon (Salmo salar), Can. J. Fish. Aquat. Sci. 53, 326–332.

    Article  Google Scholar 

  42. Olsen, R.E. and Henderson, R.J. (1997) Muscle Fatty Acid Composition and Oxidative Stress Indices of Arctic Charr, Salvelinus alpinus (L.), in Relation to Dietary Polyunsaturated Fatty Acid Levels and Temperature, Aquacult. Nutr. 3, 227–238.

    Article  CAS  Google Scholar 

  43. Watanabe, T. (1982) Lipid Nutrition in Fish, Comp. Biochem. Physiol. 73B, 3–15.

    CAS  Google Scholar 

  44. Sugiura, S.H., Dong, F.M., Rathbone, C.K. and Hardy, R.W. (1998) Apparent Protein Digestibility and Mineral Availability in Various Feed Ingredients for Salmonid Feeds, Aquaculture 159, 177–202.

    Article  CAS  Google Scholar 

  45. Ringø, E. (1989) The Effect of Linoleic Acid (18∶2n−6) on Lipid and Protein Digestibility and Growth in Arctic charr, Salvelinus alpinus (L.), Physiol. Ecol. Jpn. Spec. 1, 473–482.

    Google Scholar 

  46. Ringø, E. (1993) Does Dietary Linoleic Acid Affect Intestinal Microflora in Arctic Charr, Salvelinus alpinus (L.)? Aquacult. Fish. Manage. 24, 133–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Torstensen, B.E., Lie, Ø. & Frøyland, L. Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)—Effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources. Lipids 35, 653–664 (2000). https://doi.org/10.1007/s11745-000-0570-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0570-6

Keywords

Navigation